您的位置:首页

『TensorFlow』SSD源码学习_其三:搜索网格生成

2018-07-17 11:05 633 查看
Fork版本项目地址:SSD

上一节中我们定义了vgg_300的网络结构,实际使用中还需要匹配SSD另一关键组件:被选取特征层的搜索网格。在项目中,vgg_300网络网格生成都被统一进一个class中,我们从class SSDNet开始谈起。

一、初始化class SSDNet

这是SSDNet的初始化部分,这一部分的内容在上一节都提到过了:网络超参数定义 & 初始化vgg_300网络结构并更新feat_shapes


【注1】:feat_shapes更新之前每一元素是二维元组(HW),更新之后变成三维(HWC),不影响使用,实际使用时会采取[1:3]切片。

【注2】:虽然给的参数是输入300*300的图片,实际测试中想要匹配后面的feat_shape,需要304*304的输入才行



SSDParams = namedtuple('SSDParameters', ['img_shape',
'num_classes',
'no_annotation_label',
'feat_layers',
'feat_shapes',
'anchor_size_bounds',
'anchor_sizes',
'anchor_ratios',
'anchor_steps',
'anchor_offset',
'normalizations',
'prior_scaling'
])

class SSDNet(object):
"""Implementation of the SSD VGG-based 300 network.

The default features layers with 300x300 image input are:
conv4 ==> 38 x 38
conv7 ==> 19 x 19
conv8 ==> 10 x 10
conv9 ==> 5 x 5
conv10 ==> 3 x 3
conv11 ==> 1 x 1
The default image size used to train this network is 300x300.
"""
default_params = SSDParams(
img_shape=(300, 300),
num_classes=21,
no_annotation_label=21,
feat_layers=['block4', 'block7', 'block8', 'block9', 'block10', 'block11'],
feat_shapes=[(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)],
anchor_size_bounds=[0.15, 0.90],
# anchor_size_bounds=[0.20, 0.90],
anchor_sizes=[(21., 45.),
(45., 99.),
(99., 153.),
(153., 207.),
(207., 261.),
(261., 315.)],
anchor_ratios=[[2, .5],
[2, .5, 3, 1./3],
[2, .5, 3, 1./3],
[2, .5, 3, 1./3],
[2, .5],
[2, .5]],
anchor_steps=[8, 16, 32, 64, 100, 300],
anchor_offset=0.5,
normalizations=[1, -1, -1, -1, -1, -1],  # 控制SSD层处理时是否预先沿着HW正则化
prior_scaling=[0.1, 0.1, 0.2, 0.2]
)

def __init__(self, params=None):
"""Init the SSD net with some parameters. Use the default ones
if none provided.
"""
if isinstance(params, SSDParams):
self.params = params
else:
self.params = SSDNet.default_params

# ======================================================================= #
def net(self, inputs,
is_training=True,
update_feat_shapes=True,
dropout_keep_prob=0.5,
prediction_fn=slim.softmax,
reuse=None,
scope='ssd_300_vgg'):
"""SSD network definition.
向前传播网络,并且根据实际情况尝试修改self.params.feat_shapes值
"""
r = ssd_net(inputs,
num_classes=self.params.num_classes,
feat_layers=self.params.feat_layers,
anchor_sizes=self.params.anchor_sizes,
anchor_ratios=self.params.anchor_ratios,
normalizations=self.params.normalizations,
is_training=is_training,
dropout_keep_prob=dropout_keep_prob,
prediction_fn=prediction_fn,
reuse=reuse,
scope=scope)
# Update feature shapes (try at least!)
if update_feat_shapes:
# r[0]:各选中层预测结果,predictions
# feat_shapes:[(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)]
# 获取各个中间层shape(不含0维),如果含有None则返回默认的feat_shapes
shapes = ssd_feat_shapes_from_net(r[0], self.params.feat_shapes)
self.params = self.params._replace(feat_shapes=shapes)
return r


二、生成搜素网格Anchor Boxes

SSD网络的另一个关键点就是生成搜索网格(Anchor Boxes),项目中的SSD 会在 4、7、8、9、10、11 这六层生成搜索网格,数据如下,

层数卷积操作后特征大小网格增强比例单个网格增强得到网格数目总网格数目
4[38,38][2,0.5]44 x 38 x 38
7[19,19][2,0.5,3,1/3]66 x 19 x 19
8[10,10][2,0.5,3,1/3]66 x 10 x 10
9[5,5][2,0.5,3,1/3]66 x 5 x 5
10[3,3][2,0.5]44 x 3 x 3
11[1,1][2,0.5]44 x 1 x 1
每一层网格生成逻辑如下:


生成全部网格中心点坐标,存储下来

生成一组网格的长宽,存储下来

最终这一组长宽匹配所有的中心点,生成全部的网格,不过这一步不在网格生成函数中,仅是逻辑步骤


网格长宽组数=增强比例+2,对应上面表格第三列的len+2等于第四列的值。我们先忽略具体生成数学过程,先来看生成函数调用流程(按照调用栈给出):

训练脚本train_ssd_network.py建立网络

# Get the SSD network and its anchors.
ssd_class = nets_factory.get_network(FLAGS.model_name)  # 'ssd_300_vgg'
ssd_params = ssd_class.default_params._replace(num_classes=FLAGS.num_classes)  # 替换类属性
ssd_net = ssd_class(ssd_params)  # 创建类实例
ssd_shape = ssd_net.params.img_shape  # 获取类属性(300,300)
ssd_anchors = ssd_net.anchors(ssd_shape)  # 调用类方法,创建搜素框


类方法anchors

方法内部调用另一个函数……感觉很臃肿,不过可能是为了函数被其他class复用,可以理解

def anchors(self, img_shape, dtype=np.float32):
"""Compute the default anchor boxes, given an image shape.
"""
return ssd_anchors_all_layers(img_shape,  # (300,300)
self.params.feat_shapes,
self.params.anchor_sizes,
self.params.anchor_ratios,
self.params.anchor_steps,  # [8, 16, 32, 64, 100, 300]
self.params.anchor_offset,  # 0.5
dtype)


函数ssd_anchors_all_layers

为全部指定的feat层生成搜索网络

def ssd_anchors_all_layers(img_shape,
layers_shape,
anchor_sizes,
anchor_ratios,
anchor_steps,  # [8, 16, 32, 64, 100, 300]
offset=0.5,
dtype=np.float32):
"""Compute anchor boxes for all feature layers.
"""
layers_anchors = []
for i, s in enumerate(layers_shape):
anchor_bboxes = ssd_anchor_one_layer(img_shape, s,
anchor_sizes[i],
anchor_ratios[i],
anchor_steps[i],
offset=offset, dtype=dtype)
layers_anchors.append(anchor_bboxes)
return layers_anchors


参数如下:


anchor_steps=[8, 16, 32, 64, 100, 300]
feat_shapes=[(38, 38), (19, 19), (10, 10), (5, 5), (3, 3), (1, 1)]
anchor_sizes=[(21., 45.),
(45., 99.),
(99., 153.),
(153., 207.),
(207., 261.),
(261., 315.)]
anchor_ratios=[[2, .5],
[2, .5, 3, 1./3],
[2, .5, 3, 1./3],
[2, .5, 3, 1./3],
[2, .5],
[2, .5]]


函数ssd_anchor_one_layer

具体的单层feat网格生成逻辑

def ssd_anchor_one_layer(img_shape,
feat_shape,
sizes,
ratios,
step,
offset=0.5,
dtype=np.float32):
"""Computer SSD default anchor boxes for one feature layer.

Determine the relative position grid of the centers, and the relative
width and height.

Arguments:
feat_shape: Feature shape, used for computing relative position grids;
size: Absolute reference sizes;
ratios: Ratios to use on these features;
img_shape: Image shape, used for computing height, width relatively to the
former;
offset: Grid offset.

Return:
y, x, h, w: Relative x and y grids, and height and width.
"""
# Compute the position grid: simple way.
# y, x = np.mgrid[0:feat_shape[0], 0:feat_shape[1]]
# y = (y.astype(dtype) + offset) / feat_shape[0]
# x = (x.astype(dtype) + offset) / feat_shape[1]
# Weird SSD-Caffe computation using steps values...
# 生成feat_shape中HW对应的网格坐标
y, x = np.mgrid[0:feat_shape[0], 0:feat_shape[1]]
# step*feat_shape 约等于img_shape,这使得网格点坐标介于0~1,放缩一下即可到图像大小
y = (y.astype(dtype) + offset) * step / img_shape[0]
x = (x.astype(dtype) + offset) * step / img_shape[1]

# Expand dims to support easy broadcasting.
y = np.expand_dims(y, axis=-1)
x = np.expand_dims(x, axis=-1)

# Compute relative height and width.
# Tries to follow the original implementation of SSD for the order.
num_anchors = len(sizes) + len(ratios)
h = np.zeros((num_anchors, ), dtype=dtype)
w = np.zeros((num_anchors, ), dtype=dtype)
# Add first anchor boxes with ratio=1.
h[0] = sizes[0] / img_shape[0]
w[0] = sizes[0] / img_shape[1]
di = 1
if len(sizes) > 1:
h[1] = math.sqrt(sizes[0] * sizes[1]) / img_shape[0]
w[1] = math.sqrt(sizes[0] * sizes[1]) / img_shape[1]
di += 1
for i, r in enumerate(ratios):
h[i+di] = sizes[0] / img_shape[0] / math.sqrt(r)
w[i+di] = sizes[0] / img_shape[1] * math.sqrt(r)
return y, x, h, w


为了理清逻辑,我们在ssd_vgg_300.py最后添加下面测试代码,

if __name__=='__main__':
img = tf.placeholder(tf.float32, [1, 304, 304, 3])
with slim.arg_scope(ssd_arg_scope()):
ssd = SSDNet()
r = ssd.net(img)
ar = ssd_anchor_one_layer((300,300),(38,38),(21,45),(2,0.5),8)
import matplotlib.pyplot as plt
plt.scatter(ar[0], ar[1], c='r', marker='.')
plt.grid(True)
plt.show()


实际上绘制出了在block4上定位出的中心点坐标,输出图如下:




ar[2]
Out[2]: array([ 0.07 , 0.10246951, 0.04949747, 0.09899495], dtype=float32)
ar[3]
Out[3]: array([ 0.07 , 0.10246951, 0.09899495, 0.04949747], dtype=float32)


可以看到所有的中心点都分布在[0,1]区间,而ar[2]、ar[3]是搜索框宽高。

回过头来看函数体可以清楚看出来,

中心点和宽高都是放缩了的,乘300后才是对应于原图像的位置和宽高,这样层层下来,达到不同尺度不同位置的检测

中心点公式:y = (y.astype(dtype) + offset) * step / img_shape[0],实际上step*feat_shape约等于img_shape,
这使得网格点坐标介于0~1,放缩一下即可到图像大小,这也就是超参数anchor_steps的意义:用于辅助放缩搜
索网格中心点的位置

除了前两组宽高的计算不依赖anchor_ratios,后面的宽高计算中:

h需要乘anchor_ratios

w需要除anchor_ratios

至此,搜索网格生成完成,下一节,我们将从目标识别任务的数据处理入手,进一步了解SSD乃至其他目标检测网络的工作流程。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: