您的位置:首页 > 理论基础 > 数据结构算法

【转载】数据结构基础 之 深入理解二叉堆建立的时空复杂

2018-02-09 20:11 281 查看
之前没有太理解为什么建堆的时间复杂度是O(N),下面这篇文章讲得还挺清晰的。
原文地址:http://blog.csdn.net/u013630349/article/details/46943503
【摘要】
本文从,堆排序的建堆函数与堆调整函数入手,详细解析了堆排序中建堆函数与堆调整函数的时间复杂度,通过剖析源码细节,分别深入了解了函数粗估与精算的时间复杂度。
注意,这里不是堆排序的时间复杂度!!!
【正文】
1. 二叉堆实现堆排序源码详见文章:数据结构基础
排序 之 二叉堆实现堆排序
原文链接:http://blog.csdn.net/u013630349/article/details/46906969
2. 二叉堆建堆代码片

[cpp] view
plain copy

void BuildHeap(int *a,int size)    //建立堆    

{    

    int i;    

    for(i=size/2;i>=1;i--)    //非叶节点最大序号值为size/2     

    {    

        HeapAdjust(a,i,size);        

    }        

}     

3. 二叉堆堆调整代码片

[cpp] view
plain copy

void HeapSort(int *a,int size)    //堆排序     

{    

    int i;    

    BuildHeap(a,size);    

    for(i=size;i>=1;i--)    

    {    

        //cout<<a[1]<<" ";    

        swap(a[1],a[i]);          //交换堆顶和最后一个元素,即每次将剩余元素中的最大者放到最后面     

        //BuildHeap(a,i-1);       //将余下元素重新建立为大顶堆     

        HeapAdjust(a,1,i-1);      //重新调整堆顶节点成为大顶堆    

    }    

}     

4.深入理解堆排序时间复杂度
4.1 建堆函数循环了N/2次(N表示节点数目)。
4.2 再看堆调整函数,函数处理一层所需时间是常数级的O(1),然后,进入递归过程。设堆共有N个节点,则高度最多为LgN,因此,最多递归LgN,耗费时间O(LgN)。
因此。复杂度的上界很好理解,为(N/2)*LgN,即O(NLgN)。但是这并不是一个紧绷的复杂度,仔细想想也知道根本没进行(N/2)*LgN那么多次。

4.3 深入理解算法步骤
4.3.1 所有的叶节点都不进行堆调整;
4.3.2 堆调整函数是从高度为1的节点开始进行直到根为止。所以,这时候我们需要理解调整函数的执行过程,不能单纯的理解为LgN。而且,对于高度为1的节点,至多替换发生1次;对于高度为2的节点,至多替换发生2次,以此类推,对于高度为h的节点,至多发生替换h次。我们知道,堆是满树,叶节点共有N/2个,它们的高度是0
。高度为1的节点正是他们的父节点,共有(N/2)/2个。高度为2的,类推有((N/2)/2)/2个。因此高度为h的共有N/(2的(h+1)次方)个。
4.4 计算算法复杂度
堆的高度总共只有0到LgN,现在每个高度的节点个数清楚,每个高度的每个节点至多发生的替换次数也清楚,则总共发生的替换数也就清楚了:
4.4.1  (N/(2的(h+1)次方)) * h 的求和 。

(h取值0~LgN)N是常数,简化一下变成(N/2) * ( h / (2的h次方) ) (h取值0~LgN);

4.4.2  接下来就是一个级数求和问题了。求 ( h / (2的h次方) ) (h取值0~LgN)。

设结果为S

有,S = 1/2 + 2/(2的2次方)  + 3/(2的3次方) ... + LgN/ (2的LgN次方)。

有,S*(1/2) = 1/(2的2次方) + 2/(2的3次方) + 3/(2的4次方)...+LgN/(2的(LgN+1)次方)。

两式错位相减

有,S*(1/2) = 1/2 + 1/(2的2次方)  + 1/(2的3次方) ... + 1/ (2的LgN次方) - LgN/(2的(LgN+1)次方)。

右式前边几项为等比数列,最终化简结果为

S = 2 - (1/2)的(LgN-1)次方-LgN / ( 2的LgN次方)。

当N趋向于无穷大时,右式的二,三两项都趋近于0,于是limS = 2。

所以,我们要求的建堆复杂度为O( (N/2) * S ) = O(N)。

5.算法小结
从上述推导过程可以看出,重点在于根据建堆函数找出计算复杂度的算式,然后利用求级数,求极限的方法解出结果。其实最终还是回归了理解算法和合理利用数学工具上。

但是这并不是一个紧绷的复杂度,仔细想想也知道根本没进行(N/2)*LgN那么多次。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐