您的位置:首页 > 其它

动态规划---最优二叉搜索树问题

2017-12-29 10:52 417 查看
http://blog.csdn.net/liufeng_king/article/details/8694652

1、问题描速:  

     设 S={x1, x2,
···, xn} 是一个有序集合,且x1, x2, ···, xn表示有序集合的二叉搜索树利用二叉树的顶点存储有序集中的元素,而且具有性质:存储于每个顶点中的元素x
大于其左子树中任一个顶点中存储的元素,小于其右子树中任意顶点中存储的元素。二叉树中的叶顶点是形如(xi, xi+1) 的开区间。在表示S的二叉搜索树中搜索一个元素x,返回的结果有两种情形:

    (1) 在二叉树的内部顶点处找到: x = xi

    (2) 在二叉树的叶顶点中确定: x∈ (xi , xi+1)

    设在情形(1)中找到元素x = xi的概率为bi;在情形(2)中确定x∈ (xi ,
xi+1)的概率为ai。其中约定x0= -∞ , xn+1=
+ ∞ ,有

    


    集合{a0,b1,a1,……bn,an}称为集合S的存取概率分布。 
  

   最优二叉搜索树:在一个表示S的二叉树T中,设存储元素xi的结点深度为ci;叶结点(xj,xj+1)的结点深度为dj。

     


    注:在检索过程中,每进行一次比较,就进入下面一层,对于成功的检索,比较的次数就是所在的层数加1。对于不成功的检索,被检索的关键码属于那个外部结点代表的可能关键码集合,比较次数就等于此外部结点的层数。对于图的内结点而言,第0层需要比较操作次数为1,第1层需要比较2次,第2层需要3次。

     p表示在二叉搜索树T中作一次搜索所需的平均比较次数。P又称为二叉搜索树T的平均路长,在一般情况下,不同的二叉搜索树的平均路长是不同的。对于有序集S及其存取概率分布(a0,b1,a1,……bn,an),在所有表示有序集S的二叉搜索树中找出一棵具有最小平均路长的二叉搜索树。 
  

     设Pi是对ai检索的概率。设qi是对满足ai<X<ai+1,0<=i<=n的标识符X检索的概率, (假定a0=--∞且an+1=+ ∞)。



      对于有n个关键码的集合,其关键码有n!种不同的排列,可构成的不同二叉搜索树有

棵。(n个结点的不同二叉树,卡塔兰数)。如何评价这些二叉搜索树,可以用树的搜索效率来衡量。例如:标识符集{1,
2, 3}={do, if, stop}可能的二分检索树为:



     若P1=0.5, P2=0.1, P3=0.05,q0=0.15, q1=0.1, q2=0.05, q3=0.05,求每棵树的平均比较次数(成本)。     

     Pa(n)=1 × p1 + 2 × p2+3 × p3 + 1×q0 +2×q1+ 3×( q2 + q3 ) =1 × 0.5+ 2 × 0.1+3 ×0.05 + 1×0.05 +2×0.1+ 3×( 0.05 + 0.05 ) =1.5

     Pb(n)=1 × p1 + 2 × p3+3 × p2 + 1×q0 +2×q3
+ 3×( q1 + q2 ) =1 × 0.5+ 2 × 0.05 + 3 ×0.1 + 1×0.15 +2×0.05+ 3×( 0.1 + 0.05 ) =1.6

     Pc(n)=1 × p2 + 2 × (p1 +  p3) + 2×(q0 +q1 +q2 + q3 ) =1 × 0.1+ 2 × (0.5 + 0.05)
+ 2×(0.15 + 0.1 + 0.05 + 0.05) =1.9

     Pd(n)=1 × p3 + 2 × p1+3 × p2 + 1 × q3+2 × q0 +3 × (q1+ q2) =1 × 0.05 + 2 × 0.5
+ 3 × 0.1 + 1×0.05 + 2 × 0.15 + 3 × (0.1 + 0.05) =2.15

     Pe(n)=1 × p3 + 2 × p2+3 × p1 + 1 × q3+2 × q2 +3 × (q0 + q1) =1 × 0.05 + 2 ×
0.1+ 3 × 0.5 + 1×0.05 + 2 × 0.15 + 3 × (0.15 + 0.1) =2.85

     因此,上例中的最小平均路长为Pa(n)=1.5。

     可以得出结论:结点在二叉搜索树中的层次越深,需要比较的次数就越多,因此要构造一棵最小二叉树,一般尽量把搜索概率较高的结点放在较高的层次。

     2、最优子结构性质:

     假设选择 k为树根,则 1, 2, …, k-1 和a0, a1,
…, ak-1 都将位于左子树 L 上,其余结点 (k+1, …, n 和 ak,
ak+1, …, an)位于右子树
R 上。设COST(L) 和COST(R) 分别是二分检索树T的左子树和右子树的成本。则检索树T的成本是:P(k)+ COST(L) + COST(R) + …… 。若 T 是最优的,则上式及 COST(L) 和COST(R) 必定都取最小值。

    证明:二叉搜索树T 的一棵含有顶点xi , ··· , xj和叶顶点(xi-1 ,
xi ) , ··· , ( xj ,
xj+1)的子树可以看作是有序集{ xi ,
··· , xj}关于全集为 { xi-1 ,
xj+1 }的一棵二叉搜索树(T自身可以看作是有序集) 。根据S 的存取分布概率,在子树的顶点处被搜索到的概率是:

。{xi ,
··· , xj}的存储概率分布为{ai-1,
bi, …, bj, aj },其中,ah,bk分别是下面的条件概率:



     设Tij是有序集{xi ,
··· , xj}关于存储概率分布为{ai-1,
bi, …, bj, aj}的一棵最优二叉搜索树,其平均路长为pij,Tij的根顶点存储的元素xm,其左子树Tl和右子树Tr的平均路长分别为pl和pr。由于Tl和Tr中顶点深度是它们在Tij中的深度减1,所以得到:



     由于Ti是关于集合{xi ,
··· , xm-1}的一棵二叉搜索树,故Pl>=Pi,m-1。若Pl>Pi,m-1,则用Ti,m-1替换Tl可得到平均路长比Tij更小的二叉搜索树。这与Tij是最优二叉搜索树矛盾。故Tl是一棵最优二叉搜索树。同理可证Tr也是一棵最优二叉搜索树。因此最优二叉搜索树问题具有最优子结构性质。

     3、递推关系:

     根据最优二叉搜索树问题的最优子结构性质可建立计算pij的递归式如下:

     

初始时:


     记 wi,j pi,j为m(i,j)
,则m(1,n)=w1,n p1,n=p1,n为所求的最优值。计算m(i,j)的递归式为:

    


     4、求解过程:

    1)没有内部节点时,构造T[1][0],T[2][1],T[3][2]……,T[n+1]

    2)构造只有1个内部结点的最优二叉搜索树T[1][1],T[2][2]…, T

,可以求得m[i][i] 同时可以用一个数组存做根结点元素为:s[1][1]=1, s[2][2]=2…s

=n

    3)构造具有2个、3个、……、n个内部结点的最优二叉搜索树。

    ……

    r ( 起止下标的差)

    0   T[1][1], T[2][2]       , …,     T



    1   T[1][2], T[2][3], …,T[n-1]


    2   T[1][3], T[2][4], …,T[n-2]


    ……

    r   T[1][r+1], T[2][r+2], …,T[i][i+r],…,T[n-r]

    ……

    n-1   T[1]
 

#include <stdio.h>
#include <iostream>
#include <fstream>
#include <string.h>
using namespace std;

const int N = 3;

void OptimalBinarySearchTree(double a[],double b[],int n,double **m,int **s,double **w);
void Traceback(int n,int i,int j,int **s,int f,char ch);

int main()
{
double a[] = {0.15,0.1,0.05,0.05};
double b[] = {0.00,0.5,0.1,0.05};

cout<<"有序集的概率分布为:"<<endl;
for(int i=0; i<N+1; i++)
{
cout<<"a"<<i<<"="<<a[i]<<",b"<<i<<"="<<b[i]<<endl;
}

double **m = new double *[N+2];
int **s = new int *[N+2];
double **w =new double *[N+2];

for(int i=0;i<N+2;i++)
{
m[i] = new double[N+2];
s[i] = new int[N+2];
w[i] = new double[N+2];
}

OptimalBinarySearchTree(a,b,N,m,s,w);
cout<<"二叉搜索树最小平均路长为:"<<m[1]
<<endl;
cout<<"构造的最优二叉树为:"<<endl;
Traceback(N,1,N,s,0,'0');

for(int i=0;i<N+2;i++)
{
delete m[i];
delete s[i];
delete w[i];
}
delete[] m;
delete[] s;
delete[] w;
return 0;
}

void OptimalBinarySearchTree(double a[],double b[],int n,double **m,int **s,double **w)
{
//初始化构造无内部节点的情况
for(int i=0; i<=n; i++)
{
w[i+1][i] = a[i];
m[i+1][i] = 0;
}

for(int r=0; r<n; r++)//r代表起止下标的差
{
for(int i=1; i<=n-r; i++)//i为起始元素下标
{
int j = i+r;//j为终止元素下标

//构造T[i][j] 填写w[i][j],m[i][j],s[i][j]
//首选i作为根,其左子树为空,右子树为节点
w[i][j]=w[i][j-1]+a[j]+b[j];
m[i][j]=m[i+1][j];
s[i][j]=i;

//不选i作为根,设k为其根,则k=i+1,……j
//左子树为节点:i,i+1……k-1,右子树为节点:k+1,k+2,……j
for(int k=i+1; k<=j; k++)
{
double t = m[i][k-1]+m[k+1][j];

if(t<m[i][j])
{
m[i][j]=t;
s[i][j]=k;//根节点元素
}
}
m[i][j]+=w[i][j];
}
}
}

void Traceback(int n,int i,int j,int **s,int f,char ch)
{
int k=s[i][j];
if(k>0)
{
if(f==0)
{
//根
cout<<"Root:"<<k<<" (i:j):("<<i<<","<<j<<")"<<endl;
}
else
{
//子树
cout<<ch<<" of "<<f<<":"<<k<<" (i:j):("<<i<<","<<j<<")"<<endl;
}

int t = k-1;
if(t>=i && t<=n)
{
//回溯左子树
Traceback(n,i,t,s,k,'L');
}
t=k+1;
if(t<=j)
{
//回溯右子树
Traceback(n,t,j,s,k,'R');
}
}
}4、构造最优解:

   算法OptimalBinarySearchTree中用s[i][j]保存最优子树T(i,j)的根节点中的元素。当s[i]
=k时,xk为所求二叉搜索树根节点元素。其左子树为T(1,k-1)。因此,i=s[1][k-1]表示T(1,k-1)的根节点元素为xi。依次类推,容易由s记录的信息在O(n)时间内构造出所求的最优二叉搜索树。

 5、复杂度分析与优化:

   算法中用到3个数组m,s和w,故所需空间复杂度为O(n^2)。算法的主要计算量在于计算

。对于固定的r,它需要的计算时间O(j-i+1)=O(r+1)。因此算法所耗费的总时间为:

。事实上,由《动态规划加速原理之四边形不等式》可以得到:

而此状态转移方程的时间复杂度为O(n^2)。由此,对算法改进后的代码如下:
#include <stdio.h>
#include <iostream>
#include <fstream>
#include <string.h>
using namespace std;

const int N = 3;

void OptimalBinarySearchTree(double a[],double b[],int n,double **m,int **s,double **w);
void Traceback(int n,int i,int j,int **s,int f,char ch);

int main()
{
double a[] = {0.15,0.1,0.05,0.05};
double b[] = {0.00,0.5,0.1,0.05};

cout<<"有序集的概率分布为:"<<endl;
for(int i=0; i<N+1; i++)
{
cout<<"a"<<i<<"="<<a[i]<<",b"<<i<<"="<<b[i]<<endl;
}

double **m = new double *[N+2];
int **s = new int *[N+2];
double **w =new double *[N+2];

for(int i=0;i<N+2;i++)
{
m[i] = new double[N+2];
s[i] = new int[N+2];
w[i] = new double[N+2];
}

OptimalBinarySearchTree(a,b,N,m,s,w);
cout<<"二叉搜索树最小平均路长为:"<<m[1]
<<endl;
cout<<"构造的最优二叉树为:"<<endl;
Traceback(N,1,N,s,0,'0');

for(int i=0;i<N+2;i++)
{
delete m[i];
delete s[i];
delete w[i];
}
delete[] m;
delete[] s;
delete[] w;
return 0;
}

void OptimalBinarySearchTree(double a[],double b[],int n,double **m,int **s,double **w)
{
//初始化构造无内部节点的情况
for(int i=0; i<=n; i++)
{
w[i+1][i] = a[i];
m[i+1][i] = 0;
s[i+1][i] = 0;
}

for(int r=0; r<n; r++)//r代表起止下标的差
{
for(int i=1; i<=n-r; i++)//i为起始元素下标
{
int j = i+r;//j为终止元素下标
int i1 = s[i][j-1]>i?s[i][j-1]:i;
int j1 = s[i+1][j]>i?s[i+1][j]:j;

//构造T[i][j] 填写w[i][j],m[i][j],s[i][j]
//首选i作为根,其左子树为空,右子树为节点
w[i][j]=w[i][j-1]+a[j]+b[j];
m[i][j]=m[i][i1-1]+m[i1+1][j];
s[i][j]=i1;

//不选i作为根,设k为其根,则k=i+1,……j
//左子树为节点:i,i+1……k-1,右子树为节点:k+1,k+2,……j
for(int k=i1+1; k<=j1; k++)
{
double t = m[i][k-1]+m[k+1][j];

if(t<m[i][j])
{
m[i][j]=t;
s[i][j]=k;//根节点元素
}
}
m[i][j]+=w[i][j];
}
}
}

void Traceback(int n,int i,int j,int **s,int f,char ch)
{
int k=s[i][j];
if(k>0)
{
if(f==0)
{
//根
cout<<"Root:"<<k<<" (i:j):("<<i<<","<<j<<")"<<endl;
}
else
{
//子树
cout<<ch<<" of "<<f<<":"<<k<<" (i:j):("<<i<<","<<j<<")"<<endl;
}

int t = k-1;
if(t>=i && t<=n)
{
//回溯左子树
Traceback(n,i,t,s,k,'L');
}
t=k+1;
if(t<=j)
{
//回溯右子树
Traceback(n,t,j,s,k,'R');
}
}
}

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: