您的位置:首页 > 编程语言 > Java开发

深入理解Java虚拟机 (一)

2017-12-27 00:00 169 查看
Sun官方所定义的Java技术体系包括:Java程序设计语言、各种硬件平台上的Java虚拟机、Class文件格式、Java API类库、来自商业机构和开源社区的第三方Java类库; 我们把 Java程序设计语言、Java虚拟机、Java API类库三部分统称为JDK;

第二章 Java内存区域 与 内存溢出异常



1. 程序计数器

.程序计数器(Program Counter Register)是一块较小的内存空间,可以看做是当前线程所执行的字节码的行号指示器。

Java虚拟机的多线程是通过线程轮流切换并分配处理器执行时间的方式来实现的,在任何一个确定的时刻,一个处理器(对于多核处理器来说是一个内核)只会执行一条线程中的指令。因此,为了线程切换后能恢复到正确的执行位置,每条线程都需要有一个独立存储的程序计数器,各条线程之间的计数器互不影响,我们称这类内存区域为“线程有”的内存。

线程正在执行的是一个Java方法,如果正在执行的是Natvie方法,这个计数器值则为空(Undefined)。此内存区域是唯一一个在Java虚拟机规范中没有规定任何OutOfMemoryError情况的区域。

2. Java虚拟机栈
栈帧是方法运行期的基础数据结构,栈容量可由-Xss参数设定

与程序计数器一样,Java虚拟机栈(Java Virtual Machine Stacks)也是线程有的,它的生命周期与线程相同。虚拟机栈描述的是Java方法执行的内存模型:每个方法在执行的同时会创建一个栈帧(Stack Frame)用于存储局部变量表、操作数栈、动态链接、方法出口等信息, 每一个方法被调用直至执行完成的过程,就对应着一个栈帧在虚拟机栈中从入栈到出栈的过程。

常有人把Java内存区分为堆内存(Heap)和栈内存(Stack),这种分法比较粗糙,Java内存区域的划分实际上远比这复杂。其中所指的“堆”在后面会专门讲述,而所指的“栈”就是现在讲的虚拟机栈,或者说是虚拟机栈中的局部变量表部分。

局部变量表所需的内存空间在编译期间完成分配,当进入一个方法时,这个方法需要在帧中分配多大的局部变量空间是完全确定的,在方法运行期间不会改变局部变量表的大小。主要存放了编译期可知的各种基本数据类型(boolean、int、long、float等)、对象引用(reference类型)、returnAddress类型(指向了一条字节码指令的地址);

在Java虚拟机规范中,对这个区域规定了两种异常情况: 1、如果线程请求的栈深度大于虚拟机所允许的深度,将抛出StackOverflowError异常。 2、如果虚拟机在动态扩展栈时无法申请到足够的内存空间,则抛出OutOfMemoryError异常。 这两种情况存在着一些互相重叠的地方:当栈空间无法继续分配时,到底是内存太小,还是已使用的栈空间太大,其本质上只是对同一件事情的两种描述而已。在单线程的操作中,虚拟机抛出的都是StackOverflowError异常。在多线程环境下,则抛出OutOfMemoryError异常。

java -XX:+PrintFlagsFinal -version | grep -i 'stack' ,查看java虚拟机默认的栈深度,1024k

局部变量表 的容量以变量槽(Slot)为最小单位。在虚拟机规范中并没有明确指明一个Slot应占用的内存空间大小(允许其随着处理器、操作系统或虚拟机的不同而发生变化),一个Slot可以存放一个32位以内的数据类型:boolean、byte、char、short、int、float、reference和returnAddresss。reference是对象的引用类型,returnAddress是为字节指令服务的,它执行了一条字节码指令的地址。对于64位的数据类型(long和double),虚拟机会以高位在前的方式为其分配两个连续的Slot空间。
虚拟机通过索引定位的方式使用局部变量表,索引值的范围是从0开始到局部变量表最大的Slot数量,对于32位数据类型的变量,索引n代表第n个Slot,对于64位的,索引n代表第n和第n+1两个Slot。
操作数栈 又被称为操作栈,操作数栈的最大深度也是在编译的时候就确定了。32位数据类型所占的栈容量为1, 64为数据类型所占的栈容量为2。当一个方法开始执行时,它的操作栈是空的,在方法的执行过程中,会有各种字节码指令(比如:加操作、赋值元算等)向操作栈中写入和提取内容,即入栈和出栈操作。
Java虚拟机的解释执行引擎称为“基于栈的执行引擎”,其中所指的“栈”就是操作数栈。因此我们也称Java虚拟机是基于栈的,这点不同于Android虚拟机,Android虚拟机是基于寄存器的。基于栈的指令集最主要的优点是可移植性强,主要的缺点是执行速度相对会慢些;而由于寄存器由硬件直接提供,所以基于寄存器指令集最主要的优点是执行速度快,主要的缺点是可移植性差。
动态连接: 每个栈帧都包含一个指向运行时常量池(在方法区中,后面介绍)中该栈帧所属方法的引用,持有这个引用是为了支持方法调用过程中的动态连接。Class文件的常量池中存在有大量的符号引用,字节码中的方法调用指令就以常量池中指向方法的符号引用为参数。这些符号引用,一部分会在类加载阶段或第一次使用的时候转化为直接引用(如final、static域等),称为静态解析,另一部分将在每一次的运行期间转化为直接引用,这部分称为动态连接。
方法返回地址: 当一个方法被执行后,有两种方式退出该方法:执行引擎遇到了任意一个方法返回的字节码指令或遇到了异常,并且该异常没有在方法体内得到处理。无论采用何种退出方式,在方法退出之后,都需要返回到方法被调用的位置,程序才能继续执行。方法返回时可能需要在栈帧中保存一些信息,用来帮助恢复它的上层方法的执行状态。一般来说,方法正常退出时,调用者的PC计数器的值就可以作为返回地址,栈帧中很可能保存了这个计数器值,而方法异常退出时,返回地址是要通过异常处理器来确定的,栈帧中一般不会保存这部分信息。方法退出的过程实际上等同于把当前栈帧出站,因此退出时可能执行的操作有:恢复上层方法的局部变量表和操作数栈,如果有返回值,则把它压入调用者栈帧的操作数栈中,调整PC计数器的值以指向方法调用指令后面的一条指令。
3. 本地方法栈
栈容量可由-Xss参数设定
虚拟机栈为虚拟机执行Java方法(也就是字节码)服务,而本地方法栈则是为虚拟机使用到的Native方法服务。有的虚拟机(譬如Sun HotSpot虚拟机)直接就把本地方法栈和虚拟机栈合二为一。
4. Java堆
可通过参数 -Xms 和-Xmx设置 。
Java堆(Java Heap)是Java虚拟机所管理的内存中最大的一块。Java堆是被所有线程共享的一块内存区域,在虚拟机启动时创建。此内存区域的唯一目的就是存放对象实例,几乎所有的对象实例都在这里分配内存。
5. 方法区
参数-XX:MaxPermSize可设置 .
方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类信息、常量、静态变量、即时编译器编译后的代码等数据。虽然Java虚拟机规范把方法区描述为堆的一个逻辑部分,但是它却有一个别名叫做Non-Heap(非堆),目的应该是与Java堆区分开来。
6. 运行时常量池
可以通过-XX:PermSize和-XX:MaxPermSize设置

运行时常量池(Runtime Constant Pool)是方法区的一部分。Class文件中除了有类的版本、字段、方法、接口等描述等信息外,还有一项信息是常量池(Constant Pool Table),用于存放编译期生成的各种字面量和符号引用,这部分内容将在类加载后存放到方法区的运行时常量池中。

运行时常量池相对于Class文件常量池的另外一个重要特征是具备动态性,Java语言并不要求常量一定只能在编译期产生,运行期间也可能将新的常量放入池中,这种特性被开发人员利用得比较多的便是String类的intern()方法。

7. 直接内存
可通过 -XX:MaxDirectMemorySize 指定,如果不指定,则默认与Java堆的最大值(-Xmx指定)一样
直接内存(Direct Memory)并不是虚拟机运行时数据区的一部分,也不是Java虚拟机规范中定义的内存区域,但是这部分内存也被频繁地使用,而且也可能导致OutOfMemoryError异常出现

HotSpot虚拟机对象探秘

主要探讨HotSpot虚拟机在Java堆中对象分配、布局和访问的全过程。
1. 对象的创建
虚拟机遇到new指令时,

首先去检查这个指令的参数能否在常量池中定位到一个类的符号引用,并且检查引用代表的类是否已被加载、解析和初始化过。如果没有,则执行类加载过程(第7章)。

加载检查通过后,分配内存(内存在类加载完成后便可完全确定)。

内存分配完成后,虚拟机对对象进行必要的设置,如对象是哪个类的实例、如何找到类的元数据信息等(都放在对象的对象头中)。

从虚拟机角度看,一个新的对象产生了,但从java程序视角看,对象创建才刚刚开始,因为<init>方法还没有执行,,所有字段为零。执行new指令之后会接着执行<init>方法(构造方法),进行初始化,这样一个真正可用的对象才算完成产生。

2. 对象的内存布局
分为对象头、实例数据、对齐填充三部分。

1)对象头

包含两部分

存储对象自身的运行时数据,如哈希码、GC分代年龄等。长度在32位和64位的虚拟机中,分别为32bit、 64bit,官方称它为“Mark Word”

类型指针,对象指向它的类元数据的指针,虚拟机通过这个指针来确定这个对象是哪个类的实例。

注:如果对象是一个java数组,对象头中还必须有一块记录数据长度的数据。

2)实例数据

对象真正存储的有用信息,也是程序中定义的各种类型的字段内容。

3)对齐填充

由于HotSpot虚拟机要求对象的起始地址必须是8字节的整数倍,通俗的说,就是对象大小必须是8字节的整数倍。对象头正好是8字节的倍数。当实例数据部分没有对齐时,需要通过对齐填充来补全。

3. 对象的访问定位

对象访问在Java语言中无处不在,是最普通的程序行为,但即使是最简单的访问,也会却涉及Java栈、Java堆、方法区这三个最重要内存区域之间的关联关系,如下面的这句代码:
Object obj = new Object();
假设这句代码出现在方法体中,那“Object obj”这部分的语义将会反映到Java栈的本地变量表中,作为一个reference类型数据出现。

而“new Object()”这部分的语义将会反映到Java堆中,形成一块存储了Object类型所有实例数据值(Instance Data,对象中各个实例字段的数据)的结构化内存
由于reference类型在Java虚拟机规范里面只规定了一个指向对象的引用,并没有定义这个引用应该通过哪种方式去定位,以及访问到Java堆中的对象的具体位置,因此不同虚拟机实现的对象访问方式会有所不同,主流的访问方式有两种:使用句柄和直接指针。

通过句柄池访问的方式如下:



通过直接指针访问的方式如下:



这两种对象的访问方式各有优势,使用句柄访问方式的最大好处就是reference中存放的是稳定的句柄地址,在对象被移动(垃圾收集时移动对象是非常普遍的行为)时只会改变句柄中的实例数据指针,而reference本身不需要修改。使用直接指针访问方式的最大好处是速度快,它节省了一次指针定位的时间开销。目前Java默认使用的HotSpot虚拟机采用的便是是第二种方式进行对象访问的。

OutOfMemoryError: 一般的手段是先通过内存映像分析工具对Dump出来的堆存储快照进行分析,重点是确认内存中的对象是否是必要的,也就是要先分清楚到底是出现了内存泄漏(Memory Leak)还是内存溢出(Memory Overflow);

如果是内存泄漏,可进一步通过工具查看泄漏对象到GC Roots的引用链,找到泄漏对象是通过怎样的路径与GC Roots相关联并导致垃圾收集器无法自动回收它们的。掌握了泄漏对象的类型信息及GC Roots引用链的信息,就可以比较准确地定位出泄漏代码的位置;

如果不存在内存泄漏,也就是说内存中的对象确实还都必须存活着,那就应当检查虚拟机的堆参数(-Xms 与 -Xmx),与机器物理内存对比看是否还可以调大,从代码上检查是否存在某些对象生命周期过长,持有状态时间过长等情况,尝试减少程序运行期的内存消耗; 以上是处理Java堆内存问题的简单思路;
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  java虚拟机