您的位置:首页 > 编程语言 > C#

C# CancellationTokenSource和CancellationToken的实现

2017-11-29 13:52 423 查看
微软关于CancellationTokenSource的介绍很简单,其实CancellationTokenSource的使用也很简单,但是实现就不是那么简单了,我们首先来看看CancellationTokenSource的实现:

public class CancellationTokenSource : IDisposable
{
private const int CANNOT_BE_CANCELED = 0;
private const int NOT_CANCELED = 1;
private const int NOTIFYING = 2;
private const int NOTIFYINGCOMPLETE = 3;

private volatile int m_state;
private static readonly Action<object> s_LinkedTokenCancelDelegate = new Action<object>(LinkedTokenCancelDelegate);
private static readonly int s_nLists = (PlatformHelper.ProcessorCount > 24) ? 24 : PlatformHelper.ProcessorCount;
private volatile CancellationCallbackInfo m_executingCallback;
private volatile SparselyPopulatedArray<CancellationCallbackInfo>[] m_registeredCallbacksLists;
private static readonly TimerCallback s_timerCallback = new TimerCallback(TimerCallbackLogic);
private volatile Timer m_timer;

public CancellationTokenSource()
{
m_state = NOT_CANCELED;
}

//Constructs a CancellationTokenSource that will be canceled after a specified time span.
public CancellationTokenSource(Int32 millisecondsDelay)
{
if (millisecondsDelay < -1)
{
throw new ArgumentOutOfRangeException("millisecondsDelay");
}

InitializeWithTimer(millisecondsDelay);
}

private void InitializeWithTimer(Int32 millisecondsDelay)
{
m_state = NOT_CANCELED;
m_timer = new Timer(s_timerCallback, this, millisecondsDelay, -1);
}

private static void TimerCallbackLogic(object obj)
{
CancellationTokenSource cts = (CancellationTokenSource)obj;
if (!cts.IsDisposed)
{
try
{
cts.Cancel(); // will take care of disposing of m_timer
}
catch (ObjectDisposedException)
{
if (!cts.IsDisposed) throw;
}
}
}

public void Cancel()
{
Cancel(false);
}

public void Cancel(bool throwOnFirstException)
{
ThrowIfDisposed();
NotifyCancellation(throwOnFirstException);
}

public void CancelAfter(Int32 millisecondsDelay)
{
ThrowIfDisposed();

if (millisecondsDelay < -1)
{
throw new ArgumentOutOfRangeException("millisecondsDelay");
}

if (IsCancellationRequested) return;
if (m_timer == null)
{
Timer newTimer = new Timer(s_timerCallback, this, -1, -1);
if (Interlocked.CompareExchange(ref m_timer, newTimer, null) != null)
{
newTimer.Dispose();
}
}

// It is possible that m_timer has already been disposed, so we must do
// the following in a try/catch block.
try
{
m_timer.Change(millisecondsDelay, -1);
}
catch (ObjectDisposedException)
{
}
}

private void NotifyCancellation(bool throwOnFirstException)
{
if (IsCancellationRequested)
return;

// If we're the first to signal cancellation, do the main extra work.
if (Interlocked.CompareExchange(ref m_state, NOTIFYING, NOT_CANCELED) == NOT_CANCELED)
{
Timer timer = m_timer;
if(timer != null) timer.Dispose();

//record the threadID being used for running the callbacks.
ThreadIDExecutingCallbacks = Thread.CurrentThread.ManagedThreadId;

//If the kernel event is null at this point, it will be set during lazy construction.
if (m_kernelEvent != null)
m_kernelEvent.Set(); // update the MRE value.

ExecuteCallbackHandlers(throwOnFirstException);
Contract.Assert(IsCancellationCompleted, "Expected cancellation to have finished");
}
}

/// Invoke the Canceled event. The handlers are invoked synchronously in LIFO order.
private void ExecuteCallbackHandlers(bool throwOnFirstException)
{
Contract.Assert(IsCancellationRequested, "ExecuteCallbackHandlers should only be called after setting IsCancellationRequested->true");
Contract.Assert(ThreadIDExecutingCallbacks != -1, "ThreadIDExecutingCallbacks should have been set.");

List<Exception> exceptionList = null;
SparselyPopulatedArray<CancellationCallbackInfo>[] callbackLists = m_registeredCallbacksLists;

if (callbackLists == null)
{
Interlocked.Exchange(ref m_state, NOTIFYINGCOMPLETE);
return;
}

try
{
for (int index = 0; index < callbackLists.Length; index++)
{
SparselyPopulatedArray<CancellationCallbackInfo> list = Volatile.Read<SparselyPopulatedArray<CancellationCallbackInfo>>(ref callbackLists[index]);
if (list != null)
{
SparselyPopulatedArrayFragment<CancellationCallbackInfo> currArrayFragment = list.Tail;

while (currArrayFragment != null)
{
for (int i = currArrayFragment.Length - 1; i >= 0; i--)
{
m_executingCallback = currArrayFragment[i];
if (m_executingCallback != null)
{
CancellationCallbackCoreWorkArguments args = new CancellationCallbackCoreWorkArguments(currArrayFragment, i);
try
{
if (m_executingCallback.TargetSyncContext != null)
{
m_executingCallback.TargetSyncContext.Send(CancellationCallbackCoreWork_OnSyncContext, args);
ThreadIDExecutingCallbacks = Thread.CurrentThread.ManagedThreadId;
}
else
{
CancellationCallbackCoreWork(args);
}
}
catch(Exception ex)
{
if (throwOnFirstException)
throw;
if(exceptionList == null)
exceptionList = new List<Exception>();
exceptionList.Add(ex);
}
}
}
currArrayFragment = currArrayFragment.Prev;
}
}
}
}
finally
{
m_state = NOTIFYINGCOMPLETE;
m_executingCallback = null;
Thread.MemoryBarrier(); // for safety, prevent reorderings crossing this point and seeing inconsistent state.
}

if (exceptionList != null)
{
Contract.Assert(exceptionList.Count > 0, "Expected exception count > 0");
throw new AggregateException(exceptionList);
}
}

private void CancellationCallbackCoreWork_OnSyncContext(object obj)
{
CancellationCallbackCoreWork((CancellationCallbackCoreWorkArguments)obj);
}

private void CancellationCallbackCoreWork(CancellationCallbackCoreWorkArguments args)
{
CancellationCallbackInfo callback = args.m_currArrayFragment.SafeAtomicRemove(args.m_currArrayIndex, m_executingCallback);
if (callback == m_executingCallback)
{
if (callback.TargetExecutionContext != null)
{
callback.CancellationTokenSource.ThreadIDExecutingCallbacks = Thread.CurrentThread.ManagedThreadId;
}
callback.ExecuteCallback();
}
}

public static CancellationTokenSource CreateLinkedTokenSource(CancellationToken token1, CancellationToken token2)
{
CancellationTokenSource linkedTokenSource = new CancellationTokenSource();
bool token2CanBeCanceled = token2.CanBeCanceled;

if( token1.CanBeCanceled )
{
linkedTokenSource.m_linkingRegistrations = new CancellationTokenRegistration[token2CanBeCanceled ? 2 : 1]; // there will be at least 1 and at most 2 linkings
linkedTokenSource.m_linkingRegistrations[0] = token1.InternalRegisterWithoutEC(s_LinkedTokenCancelDelegate, linkedTokenSource);
}

if( token2CanBeCanceled )
{
int index = 1;
if( linkedTokenSource.m_linkingRegistrations == null )
{
linkedTokenSource.m_linkingRegistrations = new CancellationTokenRegistration[1]; // this will be the only linking
index = 0;
}
linkedTokenSource.m_linkingRegistrations[index] = token2.InternalRegisterWithoutEC(s_LinkedTokenCancelDelegate, linkedTokenSource);
}
return linkedTokenSource;
}

public static CancellationTokenSource CreateLinkedTokenSource(params CancellationToken[] tokens)
{
if (tokens == null)
throw new ArgumentNullException("tokens");

if (tokens.Length == 0)
throw new ArgumentException(Environment.GetResourceString("CancellationToken_CreateLinkedToken_TokensIsEmpty"));

Contract.EndContractBlock();

CancellationTokenSource linkedTokenSource = new CancellationTokenSource();
linkedTokenSource.m_linkingRegistrations = new CancellationTokenRegistration[tokens.Length];

for (int i = 0; i < tokens.Length; i++)
{
if (tokens[i].CanBeCanceled)
{
linkedTokenSource.m_linkingRegistrations[i] = tokens[i].InternalRegisterWithoutEC(s_LinkedTokenCancelDelegate, linkedTokenSource);
}
}
return linkedTokenSource;
}

internal CancellationTokenRegistration InternalRegister(Action<object> callback, object stateForCallback, SynchronizationContext targetSyncContext, ExecutionContext executionContext)
{
if (AppContextSwitches.ThrowExceptionIfDisposedCancellationTokenSource)
{
ThrowIfDisposed();
}
Contract.Assert(CanBeCanceled, "Cannot register for uncancelable token src");
if (!IsCancellationRequested)
{
if (m_disposed && !AppContextSwitches.ThrowExceptionIfDisposedCancellationTokenSource)
return new CancellationTokenRegistration();

int myIndex = Thread.CurrentThread.ManagedThreadId % s_nLists;

CancellationCallbackInfo callbackInfo = new CancellationCallbackInfo(callback, stateForCallback, targetSyncContext, executionContext, this);

//allocate the callback list array
var registeredCallbacksLists = m_registeredCallbacksLists;
if (registeredCallbacksLists == null)
{
SparselyPopulatedArray<CancellationCallbackInfo>[] list = new SparselyPopulatedArray<CancellationCallbackInfo>[s_nLists];
registeredCallbacksLists = Interlocked.CompareExchange(ref m_registeredCallbacksLists, list, null);
if (registeredCallbacksLists == null) registeredCallbacksLists = list;
}

//allocate the actual lists on-demand to save mem in low-use situations, and to avoid false-sharing.
var callbacks = Volatile.Read<SparselyPopulatedArray<CancellationCallbackInfo>>(ref registeredCallbacksLists[myIndex]);
if (callbacks == null)
{
SparselyPopulatedArray<CancellationCallbackInfo> callBackArray = new SparselyPopulatedArray<CancellationCallbackInfo>(4);
Interlocked.CompareExchange(ref (registeredCallbacksLists[myIndex]), callBackArray, null);
callbacks = registeredCallbacksLists[myIndex];
}

// Now add the registration to the list.
SparselyPopulatedArrayAddInfo<CancellationCallbackInfo> addInfo = callbacks.Add(callbackInfo);
CancellationTokenRegistration registration = new CancellationTokenRegistration(callbackInfo, addInfo);

if (!IsCancellationRequested)
return registration;

bool deregisterOccurred = registration.TryDeregister();

if (!deregisterOccurred)
{
return registration;
}
}
// If cancellation already occurred, we run the callback on this thread and return an empty registration.
callback(stateForCallback);
return new CancellationTokenRegistration();
}

public bool IsCancellationRequested
{
get { return m_state >= NOTIFYING; }
}

internal bool IsCancellationCompleted
{
get { return m_state == NOTIFYINGCOMPLETE; }
}

public CancellationToken Token
{
get
{
ThrowIfDisposed();
return new CancellationToken(this);
}
}
internal CancellationCallbackInfo ExecutingCallback
{
get { return m_executingCallback; }
}

private static void LinkedTokenCancelDelegate(object source)
{
CancellationTokenSource cts = source as CancellationTokenSource;
Contract.Assert(source != null);
cts.Cancel();
}
}


CancellationTokenSource的实现相对比较复杂,我们首先看看CancellationTokenSource的构造函数,默认构造函数将会设置【m_state = NOT_CANCELED】,我们也可以构造一个特定时间后就自动Cancel的CancellationTokenSource,自动Cancel是依赖一个Timer实例,在Timer到指定时间后调用CancellationTokenSource的Cancel方法【这里是在TimerCallbackLogic里面调用Cancel方法】,CancelAfter方法的实现也是依赖这个Timer实例和TimerCallbackLogic方法。

现在我们来看看CancellationTokenSource最主要的一个方法Cancel,Cancel方法调用NotifyCancellation方法,NotifyCancellation方法主要调用ExecuteCallbackHandlers【从这个方法的名称可以猜测到主要是调用回调方法】,在ExecuteCallbackHandlers方法里面用到一个变量m_registeredCallbacksLists,它是SparselyPopulatedArray<CancellationCallbackInfo>[]结构,【可以理解为是一个链表的数组,数组每个元素时一个链表,链表里面的每个节点都可以访问下一个节点】,我们遍历这个链表数组的每一个节点,检查节点是否有值,即m_executingCallback
!= null,然后调用回调方法,如果回调方法的TargetSyncContext不为空,调用CancellationCallbackCoreWork_OnSyncContext方法,否者调用CancellationCallbackCoreWork方法【CancellationCallbackCoreWork_OnSyncContext里面也是调用它】,CancellationCallbackCoreWork方法是调用CancellationCallbackInfo的ExecuteCallback。

CancellationTokenSource有两个CreateLinkedTokenSource方法【可以理解为创建于当前的CreateLinkedTokenSource相关联的CreateLinkedTokenSource】,期主要实现是CancellationToken的Register方法。

public struct CancellationToken
{
private CancellationTokenSource m_source;
internal CancellationToken(CancellationTokenSource source)
{
m_source = source;
}
public CancellationToken(bool canceled) :this()
{
if(canceled)
m_source = CancellationTokenSource.InternalGetStaticSource(canceled);
}

public CancellationTokenRegistration Register(Action callback)
{
if (callback == null)
throw new ArgumentNullException("callback");

return Register(s_ActionToActionObjShunt,callback,false,true);
}

public CancellationTokenRegistration Register(Action callback, bool useSynchronizationContext)
{
if (callback == null)
throw new ArgumentNullException("callback");

return Register(s_ActionToActionObjShunt,callback,useSynchronizationContext,true);
}

public CancellationTokenRegistration Register(Action<Object> callback, Object state)
{
if (callback == null)
throw new ArgumentNullException("callback");

return Register(callback,state,false,true);
}

/// Registers a delegate that will be called when this CancellationToken is canceled.
public CancellationTokenRegistration Register(Action<Object> callback, Object state, bool useSynchronizationContext)
{
return Register(callback,state,useSynchronizationContext,true);
}

private CancellationTokenRegistration Register(Action<Object> callback, Object state, bool useSynchronizationContext, bool useExecutionContext)
{
StackCrawlMark stackMark = StackCrawlMark.LookForMyCaller;

if (callback == null)
throw new ArgumentNullException("callback");

if (CanBeCanceled == false)
{
return new CancellationTokenRegistration(); // nothing to do for tokens than can never reach the canceled state. Give them a dummy registration.
}

SynchronizationContext capturedSyncContext = null;
ExecutionContext capturedExecutionContext = null;
if (!IsCancellationRequested)
{
if (useSynchronizationContext)
capturedSyncContext = SynchronizationContext.Current;
if (useExecutionContext)
capturedExecutionContext = ExecutionContext.Capture(ref stackMark, ExecutionContext.CaptureOptions.OptimizeDefaultCase);
}

// Register the callback with the source.
return m_source.InternalRegister(callback, state, capturedSyncContext, capturedExecutionContext);
}

private readonly static Action<Object> s_ActionToActionObjShunt = new Action<Object>(ActionToActionObjShunt);
private static void ActionToActionObjShunt(object obj)
{
Action action = obj as Action;
Contract.Assert(action != null, "Expected an Action here");
action();
}

public static CancellationToken None
{
get { return default(CancellationToken); }
}
public bool IsCancellationRequested
{
get
{
return m_source != null && m_source.IsCancellationRequested;
}
}

public bool CanBeCanceled
{
get
{
return m_source != null && m_source.CanBeCanceled;
}
}
public void ThrowIfCancellationRequested()
{
if (IsCancellationRequested)
ThrowOperationCanceledException();
}
private void ThrowOperationCanceledException()
{
throw new OperationCanceledException(Environment.GetResourceString("OperationCanceled"), this);
}
}


CancellationToken的很多属性都是来源于CancellationTokenSource的属性,CancellationToken的主要方法 Register 也是嗲用CancellationTokenSource的InternalRegister方法。InternalRegister方法检查当前是否发起了Cancel【IsCancellationRequested】,如果是直接调用回调方法callback(stateForCallback);,否者把回调方法包装成CancellationCallbackInfo实例,然后添加到m_registeredCallbacksLists对象中,然后在返回CancellationTokenRegistration实例。

internal class CancellationCallbackInfo
{
internal readonly Action<object> Callback;
internal readonly object StateForCallback;
internal readonly SynchronizationContext TargetSyncContext;
internal readonly ExecutionContext TargetExecutionContext;
internal readonly CancellationTokenSource CancellationTokenSource;

internal CancellationCallbackInfo(Action<object> callback, object stateForCallback, SynchronizationContext targetSyncContext, ExecutionContext targetExecutionContext,CancellationTokenSource cancellationTokenSource)
{
Callback = callback;
StateForCallback = stateForCallback;
TargetSyncContext = targetSyncContext;
TargetExecutionContext = targetExecutionContext;
CancellationTokenSource = cancellationTokenSource;
}

private static ContextCallback s_executionContextCallback;
internal void ExecuteCallback()
{
if (TargetExecutionContext != null)
{
var callback = s_executionContextCallback;
if (callback == null) s_executionContextCallback = callback = new ContextCallback(ExecutionContextCallback);

ExecutionContext.Run(TargetExecutionContext, callback, this);
}
else
{
ExecutionContextCallback(this);
}
}

private static void ExecutionContextCallback(object obj)
{
CancellationCallbackInfo callbackInfo = obj as CancellationCallbackInfo;
Contract.Assert(callbackInfo != null);
callbackInfo.Callback(callbackInfo.StateForCallback);
}
}

internal class SparselyPopulatedArray<T> where T : class
{
private readonly SparselyPopulatedArrayFragment<T> m_head;
private volatile SparselyPopulatedArrayFragment<T> m_tail;
internal SparselyPopulatedArray(int initialSize)
{
m_head = m_tail = new SparselyPopulatedArrayFragment<T>(initialSize);
}

internal SparselyPopulatedArrayFragment<T> Tail
{
get { return m_tail; }
}

internal SparselyPopulatedArrayAddInfo<T> Add(T element)
{
while (true)
{
// Get the tail, and ensure it's up to date.
SparselyPopulatedArrayFragment<T> tail = m_tail;
while (tail.m_next != null)
m_tail = (tail = tail.m_next);

// Search for a free index, starting from the tail.
SparselyPopulatedArrayFragment<T> curr = tail;
while (curr != null)
{
const int RE_SEARCH_THRESHOLD = -10; // Every 10 skips, force a search.
if (curr.m_freeCount < 1)
--curr.m_freeCount;

if (curr.m_freeCount > 0 || curr.m_freeCount < RE_SEARCH_THRESHOLD)
{
int c = curr.Length;
int start = ((c - curr.m_freeCount) % c);
if (start < 0)
{
start = 0;
curr.m_freeCount--; // Too many free elements; fix up.
}
Contract.Assert(start >= 0 && start < c, "start is outside of bounds");

// Now walk the array until we find a free slot (or reach the end).
for (int i = 0; i < c; i++)
{
// If the slot is null, try to CAS our element into it.
int tryIndex = (start + i) % c;
Contract.Assert(tryIndex >= 0 && tryIndex < curr.m_elements.Length, "tryIndex is outside of bounds");

if (curr.m_elements[tryIndex] == null && Interlocked.CompareExchange(ref curr.m_elements[tryIndex], element, null) == null)
{
int newFreeCount = curr.m_freeCount - 1;
curr.m_freeCount = newFreeCount > 0 ? newFreeCount : 0;
return new SparselyPopulatedArrayAddInfo<T>(curr, tryIndex);
}
}
}

curr = curr.m_prev;
}

// If we got here, we need to add a new chunk to the tail and try again.
SparselyPopulatedArrayFragment<T> newTail = new SparselyPopulatedArrayFragment<T>(
tail.m_elements.Length == 4096 ? 4096 : tail.m_elements.Length * 2, tail);
if (Interlocked.CompareExchange(ref tail.m_next, newTail, null) == null)
{
m_tail = newTail;
}
}
}
}

internal struct SparselyPopulatedArrayAddInfo<T> where T : class
{
private SparselyPopulatedArrayFragment<T> m_source;
private int m_index;

internal SparselyPopulatedArrayAddInfo(SparselyPopulatedArrayFragment<T> source, int index)
{
Contract.Assert(source != null);
Contract.Assert(index >= 0 && index < source.Length);
m_source = source;
m_index = index;
}

internal SparselyPopulatedArrayFragment<T> Source
{
get { return m_source; }
}

internal int Index
{
get { return m_index; }
}
}

internal class SparselyPopulatedArrayFragment<T> where T : class
{
internal readonly T[] m_elements; // The contents, sparsely populated (with nulls).
internal volatile int m_freeCount; // A hint of the number of free elements.
internal volatile SparselyPopulatedArrayFragment<T> m_next; // The next fragment in the chain.
internal volatile SparselyPopulatedArrayFragment<T> m_prev; // The previous fragment in the chain.

internal SparselyPopulatedArrayFragment(int size) : this(size, null)
{
}

internal SparselyPopulatedArrayFragment(int size, SparselyPopulatedArrayFragment<T> prev)
{
m_elements = new T[size];
m_freeCount = size;
m_prev = prev;
}

internal T this[int index]
{
get { return Volatile.Read<T>(ref m_elements[index]); }
}

internal int Length
{
get { return m_elements.Length; }
}

internal SparselyPopulatedArrayFragment<T> Prev
{
get { return m_prev; }
}

internal T SafeAtomicRemove(int index, T expectedElement)
{
T prevailingValue = Interlocked.CompareExchange(ref m_elements[index], null, expectedElement);
if (prevailingValue != null)
++m_freeCount;
return prevailingValue;
}
}


回头看CancellationCallbackInfo的实现也很简单。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: