您的位置:首页 > 其它

【第十二周项目4】Floyd算法验证

2017-11-23 11:23 302 查看
/*
* Copyright (c)2017,烟台大学计算机与控制工程学院

* 文件名称:Floyd算法的验证.cpp
* 作    者:swz
* 完成日期:2017年11月23日

* 问题描述:Dijkstra算法的验证。

* 输入描述:无
* 程序输出:测试数据
*/

//graph.h头文件代码

#ifndef GRAPH_H_INCLUDED
#define GRAPH_H_INCLUDED

#include <stdio.h>
#include <malloc.h>
#define MAXV 100                //最大顶点个数
#define INF 32767       //INF表示∞
typedef int InfoType;

//以下定义邻接矩阵类型
typedef struct
{
int no;                     //顶点编号
InfoType info;              //顶点其他信息,在此存放带权图权值
} VertexType;                   //顶点类型

typedef struct                  //图的定义
{
int edges[MAXV][MAXV];      //邻接矩阵
int n,e;                    //顶点数,弧数
VertexType vexs[MAXV];      //存放顶点信息
} MGraph;                       //图的邻接矩阵类型

//以下定义邻接表类型
typedef struct ANode            //弧的结点结构类型
{
int adjvex;                 //该弧的终点位置
struct ANode *nextarc;      //指向下一条弧的指针
InfoType info;              //该弧的相关信息,这里用于存放权值
} ArcNode;

typedef int Vertex;

typedef struct Vnode            //邻接表头结点的类型
{
Vertex data;                //顶点信息
int count;                  //存放顶点入度,只在拓扑排序中用
ArcNode *firstarc;          //指向第一条弧
} VNode;

typedef VNode AdjList[MAXV];    //AdjList是邻接表类型

typedef struct
{
AdjList adjlist;            //邻接表
int n,e;                    //图中顶点数n和边数e
} ALGraph;                      //图的邻接表类型

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
void DispMat(MGraph g);//输出邻接矩阵g
void DispAdj(ALGraph *G);//输出邻接表G

#endif // GRAPH_H_INCLUDED

//graph.cpp文件代码

#include "graph.h"
#define MaxSize 100

void Ppath(int path[][MAXV],int i,int j)  //前向递归查找路径上的顶点
{
int k;
k=path[i][j];
if (k==-1) return;  //找到了起点则返回
Ppath(path,i,k);    //找顶点i的前一个顶点k
printf("%d,",k);
Ppath(path,k,j);    //找顶点k的前一个顶点j
}
void Dispath(int A[][MAXV],int path[][MAXV],int n)
{
int i,j;
for (i=0; i<n; i++)
for (j=0; j<n; j++)
{
if (A[i][j]==INF)
{
if (i!=j)
printf("从%d到%d没有路径\n",i,j);
}
else
{
printf("  从%d到%d=>路径长度:%d 路径:",i,j,A[i][j]);
printf("%d,",i);    //输出路径上的起点
Ppath(path,i,j);    //输出路径上的中间点
printf("%d\n",j);   //输出路径上的终点
}
}
}
void Floyd(MGraph g)
{
int A[MAXV][MAXV],path[MAXV][MAXV];
int i,j,k;
for (i=0; i<g.n; i++)
for (j=0; j<g.n; j++)
{
A[i][j]=g.edges[i][j];
path[i][j]=-1;
}
for (k=0; k<g.n; k++)
{
for (i=0; i<g.n; i++)
for (j=0; j<g.n; j++)
if (A[i][j]>A[i][k]+A[k][j])
{
A[i][j]=A[i][k]+A[k][j];
path[i][j]=k;
}
}
Dispath(A,path,g.n);   //输出最短路径
}
int main()
{
MGraph g;
int A[4][4]=
{
{0,  15,INF,INF},
{10,  0,INF,  6},
{INF, 8,  0,  2},
{3,  INF, 2,  0}
};
ArrayToMat(A[0], 4, g);
Floyd(g);
return 0;
}




内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: