您的位置:首页 > 产品设计 > UI/UE

C# ConcurrentQueue实现

2017-11-22 18:48 519 查看
我们从C# Queue 和Stack的实现知道Queue是用数组来实现的,数组的元素不断的通过Array.Copy从一个数组移动到另一个数组,ConcurrentQueue我们需要关心2点:1线程安全是怎么实现的,2队列又是怎么实现的?我们来看看其实现code:

public interface IProducerConsumerCollection<T> : IEnumerable<T>, ICollection
{
void CopyTo(T[] array, int index);
bool TryAdd(T item);
bool TryTake(out T item);
T[] ToArray();
}

public class ConcurrentQueue<T> : IProducerConsumerCollection<T>, IReadOnlyCollection<T>
{
[NonSerialized]
private volatile Segment m_head;

[NonSerialized]
private volatile Segment m_tail;

private T[] m_serializationArray; // Used for custom serialization.

private const int SEGMENT_SIZE = 32;

//number of snapshot takers, GetEnumerator(), ToList() and ToArray() operations take snapshot.
[NonSerialized]
internal volatile int m_numSnapshotTakers = 0;

public ConcurrentQueue()
{
m_head = m_tail = new Segment(0, this);
}

public ConcurrentQueue(IEnumerable<T> collection)
{
if (collection == null)
{
throw new ArgumentNullException("collection");
}

InitializeFromCollection(collection);
}

private void InitializeFromCollection(IEnumerable<T> collection)
{
Segment localTail = new Segment(0, this);//use this local variable to avoid the extra volatile read/write. this is safe because it is only called from ctor
m_head = localTail;

int index = 0;
foreach (T element in collection)
{
Contract.Assert(index >= 0 && index < SEGMENT_SIZE);
localTail.UnsafeAdd(element);
index++;

if (index >= SEGMENT_SIZE)
{
localTail = localTail.UnsafeGrow();
index = 0;
}
}

m_tail = localTail;
}

public void Enqueue(T item)
{
SpinWait spin = new SpinWait();
while (true)
{
Segment tail = m_tail;
if (tail.TryAppend(item))
return;
spin.SpinOnce();
}
}

public bool TryDequeue(out T result)
{
while (!IsEmpty)
{
Segment head = m_head;
if (head.TryRemove(out result))
return true;
//since method IsEmpty spins, we don't need to spin in the while loop
}
result = default(T);
return false;
}

private class Segment
{
internal volatile T[] m_array;
internal volatile VolatileBool[] m_state;
private volatile Segment m_next;
internal readonly long m_index;
private volatile int m_low;
private volatile int m_high;
private volatile ConcurrentQueue<T> m_source;

internal Segment(long index, ConcurrentQueue<T> source)
{
m_array = new T[SEGMENT_SIZE];
m_state = new VolatileBool[SEGMENT_SIZE]; //all initialized to false
m_high = -1;
Contract.Assert(index >= 0);
m_index = index;
m_source = source;
}

internal void UnsafeAdd(T value)
{
Contract.Assert(m_high < SEGMENT_SIZE - 1);
m_high++;
m_array[m_high] = value;
m_state[m_high].m_value = true;
}

internal Segment UnsafeGrow()
{
Contract.Assert(m_high >= SEGMENT_SIZE - 1);
Segment newSegment = new Segment(m_index + 1, m_source); //m_index is Int64, we don't need to worry about overflow
m_next = newSegment;
return newSegment;
}

internal void Grow()
{
//no CAS is needed, since there is no contention (other threads are blocked, busy waiting)
Segment newSegment = new Segment(m_index + 1, m_source);  //m_index is Int64, we don't need to worry about overflow
m_next = newSegment;
Contract.Assert(m_source.m_tail == this);
m_source.m_tail = m_next;
}

internal bool TryAppend(T value)
{
if (m_high >= SEGMENT_SIZE - 1)
{
return false;
}
try
{ }
finally
{
newhigh = Interlocked.Increment(ref m_high);
if (newhigh <= SEGMENT_SIZE - 1)
{
m_array[newhigh] = value;
m_state[newhigh].m_value = true;
}

if (newhigh == SEGMENT_SIZE - 1)
{
Grow();
}
}

return newhigh <= SEGMENT_SIZE - 1;
}

internal bool TryRemove(out T result)
{
SpinWait spin = new SpinWait();
int lowLocal = Low, highLocal = High;
while (lowLocal <= highLocal)
{
if (Interlocked.CompareExchange(ref m_low, lowLocal + 1, lowLocal) == lowLocal)
{

SpinWait spinLocal = new SpinWait();
while (!m_state[lowLocal].m_value)
{
spinLocal.SpinOnce();
}
result = m_array[lowLocal];

if (m_source.m_numSnapshotTakers <= 0)
{
m_array[lowLocal] = default(T); //release the reference to the object.
}

if (lowLocal + 1 >= SEGMENT_SIZE)
{

spinLocal = new SpinWait();
while (m_next == null)
{
spinLocal.SpinOnce();
}
Contract.Assert(m_source.m_head == this);
m_source.m_head = m_next;
}
return true;
}
else
{

spin.SpinOnce();
lowLocal = Low; highLocal = High;
}
}//end of while
result = default(T);
return false;
}
}
}


首先ConcurrentQueue构造函数没有 int capacity参数了,里面的线程安全是用SpinWait自旋来实现的,当我想往队列ConcurrentQueue添加一个元素的时候,如果添加失败,那程序自旋等待一下,再次添加元素,直到添加成功。里面用到了一个Segment自定义的类型,Segment的m_array是一个含有32个元素的数组,m_state和m_array一一对应,主要是用来标记m_array里面的元素是否有效。m_next是用来连接到下一个Segment的,m_high与添加元素密切相关,m_low与移除元素有关。先看TryAppend方法,优先将当前的newhigh原子加1【newhigh = Interlocked.Increment(ref m_high);】,这样假如有多个线程同时添加元素,每一个线程拿到的newhigh 值不用,那么它们操作m_array的下标就不同了,所以彼此之间不影响,到现在添加的线程安全就明白了。那么队列又是如何实现的了?我们来看看Grow()方法,当Segment的32个元素都被使用了,那么这个时候添加元素需要扩容,扩容的方式是重新实例一个Segment,旧的Segment的m_next属性指向新的得Segment,这样就组成了一个Segment链表(Segment核心是数组),它们的index从0开始,第一个Segment的index为0,第2个Segment的index为1....。TryRemove的实现类似,m_low其实是Segment的m_array下标,程序自旋一次,查找是否有元素,如果有元素必须检查元素是否有效(!m_state[lowLocal].m_value,因为在天加元素的时候是先增加newhigh变量,然后在设置m_state[newhigh].m_value = true有效),所以移除元素的时候必选验证元素是否有效。然后释放元素m_array[lowLocal] = default(T);,如果第一个Segment的元素全部移除了【if (lowLocal + 1 >= SEGMENT_SIZE)】,那么我们就应该开始移除第2个Segment元素了,需要检查是否有第2个Segment,如果没有 就自旋等待吧,然后m_head指向第下一个Segment【m_source.m_head = m_next;】线程安全依靠SpinWait 的自旋和原子操作Interlocked.Increment和Interlocked.CompareExchange来实现的。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: