您的位置:首页 > 其它

TensorFlow官方文档中文版-笔记(三)

2017-11-02 18:14 453 查看

增加隐含层实现MNIST任务

定义模型参数

in_units = 784# in_units是输入节点数
h1_units = 300# h1_units是隐含层的输出节点数
#初始化为截断的正态分布,其标准差为0.1 (因为模型使用的激活函数是Relu,所以需要使用正态分布给参数加点噪声,来打破完全对称并且避免0梯度)
W1 = tf.Variable(tf.truncated_normal([in_units, h1_units], stddev=0.1))# 隐含层的权重
b1 = tf.Variable(tf.zeros([h1_units]))# 隐含层的偏置
W2 = tf.Variable(tf.zeros([h1_units, 10]))# 输出层的权重
b2 = tf.Variable(tf.zeros([10]))# 输出层的偏置

# 把Dropout的比率作为计算图的输入,并定义成一个placeholder,Dropout的比率keep_prob(保留节点的概率)是不一样的,通常在训练时小于1,预测时等于1,所以将比率作为计算图的输入
keep_prob = tf.placeholder(tf.float32)


定义模型

# 定义模型结构
# 定义隐含层,实现一个激活函数为ReLU的隐含层,y=relu(w1x+b1)
hidden1 = tf.nn.relu(tf.matmul(x, W1) + b1)
# 实现Dropout功能,即随机将一部分节点置为0,keep_prob参数为保留数据而不置为0的比例,训练时小于1,用于制造随机性防止过拟合,预测时等于1,使用全部特征来预测样本的类别
hidden1_drop = tf.nn.dropout(hidden1, keep_prob)
# 定义输出层
y = tf.nn.softmax(tf.matmul(hidden1_drop, W2) + b2)


准确率为98%!

完整代码如下:

# TensorFlow进阶3—增加隐含层的神经网络
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# Import data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)

sess = tf.InteractiveSession()

# Step1、2 定义输入和定义算法公式
in_units = 784# in_units是输入节点数
h1_units = 300# h1_units是隐含层的输出节点数
W1 = tf.Variable(tf.truncated_normal([in_units, h1_units], stddev=0.1))# 隐含层的权重
b1 = tf.Variable(tf.zeros([h1_units]))# 隐含层的偏置
W2 = tf.Variable(tf.zeros([h1_units, 10]))# 输出层的权重
b2 = tf.Variable(tf.zeros([10]))# 输出层的偏置

keep_prob = tf.placeholder(tf.float32)

x = tf.placeholder(tf.float32, [None, in_units])

hidden1 = tf.nn.relu(tf.matmul(x, W1) + b1)
hidden1_drop = tf.nn.dropout(hidden1, keep_prob)
y = tf.nn.softmax(tf.matmul(hidden1_drop, W2) + b2)

# Step3 定义损失函数cross-entropy
y_ = tf.placeholder(tf.float32, [None, 10])
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))

# Step4 定义优化算法-SGD
# 选择优化器(此处选择自适应优化器Adagrad)来优化loss
train_step = tf.train.AdagradOptimizer(0.3).minimize(cross_entropy)

# Step5 迭代执行训练操作
tf.global_variables_initializer().run()
for i in range(3000):
batch_xs, batch_ys = mnist.train.next_batch(100)
train_step.run({x: batch_xs, y_: batch_ys, keep_prob: 0.75})

# Step6 验证模型准确率
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: