您的位置:首页 > 其它

【深度学习】极值优化方法总结比较(SGD,Adagrad,Adadelta,Adam,Adamax,Nadam)

2017-09-13 09:50 507 查看


SGD

此处的SGD指mini-batch gradient descent,关于batch gradient descent, stochastic gradient descent, 以及 mini-batch gradient descent的具体区别就不细说了。现在的SGD一般都指mini-batch gradient descent。

SGD就是每一次迭代计算mini-batch的梯度,然后对参数进行更新,是最常见的优化方法了。即: 



其中,η是学习率,gt是梯度

SGD完全依赖于当前batch的梯度,所以η可理解为允许当前batch的梯度多大程度影响参数更新

缺点:(正因为有这些缺点才让这么多大神发展出了后续的各种算法)
选择合适的learning rate比较困难
对所有的参数更新使用同样的learning rate。对于稀疏数据或者特征,有时我们可能想更新快一些对于不经常出现的特征,对于常出现的特征更新慢一些,这时候SGD就不太能满足要求了
SGD容易收敛到局部最优,在某些情况下可能被困在鞍点【但是在合适的初始化和学习率设置下,鞍点的影响其实没这么大】


Momentum

momentum是模拟物理里动量的概念,积累之前的动量来替代真正的梯度。公式如下: 



其中,μ是动量因子

特点:
下降初期时,使用上一次参数更新,下降方向一致,乘上较大的μ能够进行很好的加速
下降中后期时,在局部最小值来回震荡的时候,gradient→0,μ使得更新幅度增大,跳出陷阱
在梯度改变方向的时候,μ能够减少更新

总而言之,momentum项能够在相关方向加速SGD,抑制振荡,从而加快收敛


Nesterov

nesterov项在梯度更新时做一个校正,避免前进太快,同时提高灵敏度。 

将上一节中的公式展开可得: 

Δθt=−η∗μ∗mt−1−η∗gt

可以看出,mt−1并没有直接改变当前梯度gt,所以Nesterov的改进就是让之前的动量直接影响当前的动量。即: 

gt=∇θt−1f(θt−1−η∗μ∗mt−1)

mt=μ∗mt−1+gt

Δθt=−η∗mt

所以,加上nesterov项后,梯度在大的跳跃后,进行计算对当前梯度进行校正。如下图:



momentum首先计算一个梯度(短的蓝色向量),然后在加速更新梯度的方向进行一个大的跳跃(长的蓝色向量),nesterov项首先在之前加速的梯度方向进行一个大的跳跃(棕色向量),计算梯度然后进行校正(绿色梯向量)

其实,momentum项和nesterov项都是为了使梯度更新更加灵活,对不同情况有针对性。但是,人工设置一些学习率总还是有些生硬,接下来介绍几种自适应学习率的方法


Adagrad

Adagrad其实是对学习率进行了一个约束。即: 



此处,对gt从1到t进行一个递推形成一个约束项regularizer,−1∑tr=1(gr)2+ϵ√ ,ϵ用来保证分母非0

特点:
前期gt较小的时候,
regularizer较大,能够放大梯度
后期gt较大的时候,regularizer较小,能够约束梯度
适合处理稀疏梯度

缺点:
由公式可以看出,仍依赖于人工设置一个全局学习率
η设置过大的话,会使regularizer过于敏感,对梯度的调节太大
中后期,分母上梯度平方的累加将会越来越大,使gradient→0,使得训练提前结束


Adadelta

Adadelta是对Adagrad的扩展,最初方案依然是对学习率进行自适应约束,但是进行了计算上的简化。 

Adagrad会累加之前所有的梯度平方,而Adadelta只累加固定大小的项,并且也不直接存储这些项,仅仅是近似计算对应的平均值。即: 

nt=ν∗nt−1+(1−ν)∗g2t

Δθt=−ηnt+ϵ−−−−−√∗gt

在此处Adadelta其实还是依赖于全局学习率的,但是作者做了一定处理,经过近似牛顿迭代法之后: 

E|g2|t=ρ∗E|g2|t−1+(1−ρ)∗g2t

Δxt=−∑t−1r=1Δxr−−−−−−−−√E|g2|t+ϵ−−−−−−−−√

其中,E代表求期望。 
此时,可以看出Adadelta已经不用依赖于全局学习率了。

特点:
训练初中期,加速效果不错,很快
训练后期,反复在局部最小值附近抖动


RMSprop

RMSprop可以算作Adadelta的一个特例:

当ρ=0.5时,E|g2|t=ρ∗E|g2|t−1+(1−ρ)∗g2t就变为了求梯度平方和的平均数。 

如果再求根的话,就变成了RMS(均方根): 

RMS|g|t=E|g2|t+ϵ−−−−−−−−√

此时,这个RMS就可以作为学习率η的一个约束: 

Δxt=−ηRMS|g|t∗gt

特点:
其实RMSprop依然依赖于全局学习率
RMSprop算是Adagrad的一种发展,和Adadelta的变体,效果趋于二者之间
适合处理非平稳目标
对于RNN效果很好


Adam

Adam(Adaptive Moment Estimation)本质上是带有动量项的RMSprop,它利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。Adam的优点主要在于经过偏置校正后,每一次迭代学习率都有个确定范围,使得参数比较平稳。公式如下: 





特点:
结合了Adagrad善于处理稀疏梯度和RMSprop善于处理非平稳目标的优点
对内存需求较小
为不同的参数计算不同的自适应学习率
也适用于大多非凸优化
适用于大数据集和高维空间


Adamax

Adamax是Adam的一种变体,此方法对学习率的上限提供了一个更简单的范围。公式上的变化如下: 

nt=max(ν∗nt−1,|gt|)

Δx=−mt^nt+ϵ∗η

可以看出,Adamax学习率的边界范围更简单


Nadam

Nadam类似于带有Nesterov动量项的Adam。公式如下: 

gt^=gt1−Πti=1μi

mt=μt∗mt−1+(1−μt)∗gt

mt^=mt1−Πt+1i=1μi

nt=ν∗nt−1+(1−ν)∗g2t

nt^=nt1−νt

mt¯=(1−μt)∗gt^+μt+1∗mt^

Δθt=−η∗mt¯nt^−−√+ϵ

可以看出,Nadam对学习率有了更强的约束,同时对梯度的更新也有更直接的影响。一般而言,在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果。


经验之谈

对于稀疏数据,尽量使用学习率可自适应的优化方法,不用手动调节,而且最好采用默认值
SGD通常训练时间更长,容易陷入鞍点,但是在好的初始化和学习率调度方案的情况下,结果更可靠
如果在意更快的收敛,并且需要训练较深较复杂的网络时,推荐使用学习率自适应的优化方法。
Adadelta,RMSprop,Adam是比较相近的算法,在相似的情况下表现差不多。
在想使用带动量的RMSprop,或者Adam的地方,大多可以使用Nadam取得更好的效果

最后展示两张可厉害的图,一切尽在图中啊,上面的都没啥用了… …


 

损失平面等高线


 

在鞍点处的比较


引用

[1]Adagrad 

[2]RMSprop[Lecture 6e] 

[3]Adadelta 

[4]Adam 

[5]Nadam 

[6]On the importance of initialization and momentum in deep learning 

[7]Keras 中文文档 

[8]Alec Radford(图) 

[9]An overview of gradient descent optimization algorithms 

[10]Gradient Descent Only Converges to Minimizers 

[11]Deep Learning:Nature

转载自:http://blog.csdn.net/u012759136/article/details/52302426
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐