您的位置:首页 > 职场人生

综合面试题整理(上)

2017-08-27 16:58 330 查看
1、实现一个单利模式,要求线程安全
//单例模式:一般用于日志模块,构造一个日志模块的全局变量在任何地方都可以使用
//保证一个类只有一个实例,并提供一个访问它的全局访问点(定义一个static函数)
//解决项目中全局变量会造成的不安全问题,不符合面向对象的封装原则问题
//考虑线程安全问题,性能问题
#include <iostream>
using namespace std;

class Singleton
{
public:
static Singleton* GetInstance()
{
return const_cast<Singleton*>(m_Instance);
}

static void DestroyInstance()
{
if (m_Instance != NULL)
{
delete m_Instance;
m_Instance = NULL;
}
}

int GetTest()
{
return m_Test;
}
private:
Singleton()
{
m_Test = 10;
}
static const Singleton *m_Instance;
int m_Test;//测试
};

const Singleton* Singleton::m_Instance = new Singleton();

int main()
{
//Singleton s; 不可以构造对象
Singleton *sp = Singleton::GetInstance();//拿到全局唯一对象
cout << sp->GetTest() << endl;
cout << sp->GetInstance() << endl;
Singleton::DestroyInstance();
cin.get();
return 0;
}

//静态成员初始化是在程序开始时,也就是进入主函数之前
//由主线程以单线程方式完成了初始化,所以静态初始化实例保证了线程安全
//在性能要求比较高的时候,就可以使用这种方式,从而避免了频繁的加锁和解锁造成的资源浪费


2.如何定义一个只能在堆上生成对象的类?!
在C++中,类的对象建立分为两种,一种是静态建立,如A a;另一种是动态建立,如A* ptr=new A;这两种方式是有区别的。

静态建立一个类对象,是由编译器为对象在栈空间中分配内存,是通过直接移动栈顶指针,挪出适当的空间,然后在这片内存空间上调用构造函数形成一个栈对象。使用这种方法,直接调用类的构造函数。

动态建立类对象,是使用new运算符将对象建立在堆空间中。这个过程分为两步,第一步是执行operator new()函数,在堆空间中搜索合适的内存并进行分配;第二步是调用构造函数构造对象,初始化这片内存空间。这种方法,间接调用类的构造函数。

那么如何定义一个只在堆上生成对象的类呢?我们把构造和析构函数设为保护的(可以继承)使用一个公有的静态函数来构造对象,使用一个函数来析构对象,类似于单例模式。
class  A
{
protected :
A(){}
~A(){}
public :
static  A* create()
{
return   new  A();
}
void  destory()
{
delete   this ;
}
};
这样我们使用create函数在堆上生成了对象,使用destroy析构对象。


3.如何定义一个只能在栈上生成对象的类?!
只有使用new来给对象分配内存,对象就会生成在堆上,如果只能在栈上生成对象,将operator new() 定义为私有的即可。
class  A
{
private :
void* operator  new ( size_t  t){}      // 注意函数的第一个参数和返回值都是固定的
void  operator  delete ( void * ptr){}  // 重载了new就需要重载delete
public :
A(){}
~A(){}
};


4.引用和指针有什么区别?
1.指针和引用的定义和性质区别:

(1)指针:指针是一个变量,只不过这个变量存储的是一个地址,指向内存的一个存储单元;而引用跟原来的变量实质上是同一个东西,只不过是原变量的一个别名而已。如:

int a=1;int *p=&a;

int a=1;int &b=a;

上面定义了一个整形变量和一个指针变量p,该指针变量指向a的存储单元,即p的值是a存储单元的地址。

而下面2句定义了一个整形变量a和这个整形a的引用b,事实上a和b是同一个东西,在内存占有同一个存储单元。

(2)存在指针常量,不存在引用常量;

(3)指针可以有多级,但是引用只能是一级(int **p;合法 而 int &&a是不合法的);

(4)指针的值可以为空,但是引用的值不能为NULL,并且引用在定义的时候必须初始化;

(5)指针的值在初始化后可以改变,即指向其它的存储单元,而引用在进行初始化后就不会再改变了。

(6)"sizeof引用"得到的是所指向的变量(对象)的大小,而"sizeof指针"得到的是指针本身的大小;

(7)指针和引用的自增(++)运算意义不一样;

2.指针和引用作为函数参数进行传递时的区别。
用指针传递参数,可以实现对实参进行改变的目的,是因为传递过来的是实参的地址,因此使用*a实际上是取存储实参的内存单元里的数据,即是对实参进行改变,因此可以达到目的。但指针作为参数传递其实也是一种值(地址值)传递,实参和形参是两个变量,但是指向了同一块存储空间。指针作为参数时,
4000
如果实参也是一个指针,就不能改变实参指针的指向。就要使用引用或二级指针(如:举个栗子)。

在讲引用作为函数参数进行传递时,实质上传递的是实参本身,即传递进来的不是实参的一个拷贝,因此对形参的修改其实是对实参的修改,所以在用引用进行参数传递时,不仅节约时间,而且可以节约空间。

举个栗子:
#include<iostream>
using namespace std;

void test(int *&p)
{
  int a=1;
  p=&a;
  cout<<p<<" "<<*p<<endl;
}

int main(void)
{
int *p=NULL;
test(p);
if(p!=NULL)
cout<<"指针p不为NULL"<<endl;
system("pause");
return 0;
}


5.const和define 有什么区别?
(1) 编译器处理方式不同
  define宏是在预处理阶段展开。
  const常量是编译运行阶段使用。
(2) 类型和安全检查不同
  define宏没有类型,不做任何类型检查,仅仅是展开。
  const常量有具体的类型,在编译阶段会执行类型检查。
(3) 存储方式不同
  define宏仅仅是展开,有多少地方使用,就展开多少次,不会分配内存。(宏定义不分配内存,变量定义分配内存。)
  const常量会在内存中分配(可以是堆中也可以是栈中)。
(4)const  可以节省空间,避免不必要的内存分配。 例如:
#define PI 3.14159 //常量宏
const doulbe Pi=3.14159; //此时并未将Pi放入ROM中 ......
double i=Pi; //此时为Pi分配内存,以后不再分配!
double I=PI; //编译期间进行宏替换,分配内存
double j=Pi; //没有内存分配
double J=PI; //再进行宏替换,又一次分配内存!
const定义常量从汇编的角度来看,只是给出了对应的内存地址,而不是象#define一样给出的是立即数,所以,const定义的常量在程序运行过程中只有一份拷贝(因为是全局的只读变量,存在静态区),而 #define定义的常量在内存中有若干个拷贝。
(5) 提高了效率。 编译器通常不为普通const常量分配存储空间,而是将它们保存在符号表中,这使得它成为一个编译期间的常量,没有了存储与读内存的操作,使得它的效率也很高。
(6) 宏替换只作替换,不做计算,不做表达式求解;
宏预编译时就替换了,程序运行时,并不分配内存。


6.inline和define 有什么区别?
define称为“宏”,在c语言编程中非常重要,它在程序编译时只是在预处理的过程中实施简单的替换操作而已,但是在替换过程中可能出现各种不安全性问题,不进行参数有效性检查。
内联函数和普通函数相比可以加快程序的运行速度,但它是以增加程序存储空间为代价的,由于不需要中断调用,在编译内联函数的时候内联函数可以直接被嵌入到目标代码中。
对于短小的代码,inline可以带来一定效率的提升,且与C时代的define(宏)相比,它更安全可靠。宏和内联函数的主要区别如下:
1. 宏是代码处不加任何验证的简单替代,而内联函数是将代码直接插入调用处,而减少了普通函数调用时的资源消耗。
2. 宏不是函数,只是在编译前预处理阶段将程序中有关字符串替换成宏体。
3. inline是函数,但在编译中不单独产生代码,而是将有关代码嵌入到调用处。
总结如下:
对于一般常量,最好用const和enum替换#define;
对于类似函数的宏,最好改用inline函数替换#define。


7.malloc和new有什么区别?!
1. malloc()函数
1.1 malloc的全称是memory allocation,中文叫动态内存分配。
原型:extern void *malloc(unsigned int num_bytes);
说明:分配长度为num_bytes字节的内存块。如果分配成功则返回指向被分配内存的指针,分配失败返回空指针NULL。当内存不再使用时,应使用free()函数将内存块释放。

1.2 void *malloc(int size);
说明:malloc 向系统申请分配指定size个字节的内存空间,返回类型是 void* 类型。void* 表示未确定类型的指针。C,C++规定,void* 类型可以强制转换为任何其它类型的指针。   
备注:void* 表示未确定类型的指针,更明确的说是指申请内存空间时还不知道用户是用这段空间来存储什么类型的数据(比如是char还是int或者...)

1.3 free
void free(void *FirstByte): 该函数是将之前用malloc分配的空间还给程序或者是操作系统,也就是释放了这块内存,让它重新得到自由。

1.4注意事项
1)申请了内存空间后,必须检查是否分配成功。
2)当不需要再使用申请的内存时,记得释放;释放后应该把指向这块内存的指针指向NULL,防止程序后面不小心使用了它。
3)这两个函数应该是配对。如果申请后不释放就是内存泄露;如果无故释放那就是什么也没有做。释放只能一次,如果释放两次及两次以上会出现错误(释放空指针例外,释放空指针其实也等于啥也没做,所以释放空指针释放多少次都没有问题)。
4)虽然malloc()函数的类型是(void *),任何类型的指针都可以转换成(void *),但是最好还是在前面进行强制类型转换,因为这样可以躲过一些编译器的检查。

1.5  malloc()到底从哪里得到了内存空间?
答案是从堆里面获得空间。也就是说函数返回的指针是指向堆里面的一块内存。操作系统中有一个记录空闲内存地址的链表。当操作系统收到程序的申请时,就会遍历该链表,然后就寻找第一个空间大于所申请空间的堆结点,然后就将该结点从空闲结点链表中删除,并将该结点的空间分配给程序。

2. new运算符
2.1 C++中,用new和delete动态创建和释放数组或单个对象。
动态创建对象时,只需指定其数据类型,而不必为该对象命名,new表达式返回指向该新创建对象的指针,我们可以通过指针来访问此对象。
int *pi=new int;
这个new表达式在堆区中分配创建了一个整型对象,并返回此对象的地址,并用该地址初始化指针pi 。

2.2 动态创建对象的初始化
动态创建的对象可以用初始化变量的方式初始化。
int *pi=new int(100); //指针pi所指向的对象初始化为100
string *ps=new string(10,’9’);//*ps 为“9999999999”
如果不提供显示初始化,对于类类型,用该类的默认构造函数初始化;而内置类型的对象则无初始化。
也可以对动态创建的对象做值初始化:
int *pi=new int( );//初始化为0
int *pi=new int;//pi 指向一个没有初始化的int
string *ps=new string( );//初始化为空字符串 (对于提供了默认构造函数的类类型,没有必要对其对象进行值初始化)

2.3 撤销动态创建的对象
delete表达式释放指针指向的地址空间。
delete pi ;// 释放单个对象
delete [ ]pi;//释放数组
如果指针指向的不是new分配的内存地址,则使用delete是不合法的。

2.4 在delete之后,重设指针的值
delete p; //执行完该语句后,p变成了不确定的指针,在很多机器上,尽管p值没有明确定义,但仍然存放了它之前所指对象的地址,然后p所指向的内存已经被释放了,所以p不再有效。此时,该指针变成了悬垂指针(悬垂指针指向曾经存放对象的内存,但该对象已经不存在了)。悬垂指针往往导致程序错误,而且很难检测出来。
一旦删除了指针所指的对象,立即将指针置为NULL,这样就非常清楚的指明指针不再指向任何对象。(零值指针:int *ip=0;)

2.5 区分零值指针和NULL指针
零值指针,是值是0的指针,可以是任何一种指针类型,可以是通用变体类型void*也可以是char*,int*等等。
空指针,其实空指针只是一种编程概念,就如一个容器可能有空和非空两种基本状态,而在非空时可能里面存储了一个数值是0,因此空指针是人为认为的指针不提供任何地址讯息。参考:http://www.cnblogs.com/fly1988happy/archive/2012/04/16/2452021.html

2.6 new分配失败时,返回什么?
1993年前,c++一直要求在内存分配失败时operator  new要返回0,现在则是要求operator  new抛出std::bad_alloc异常。很多c++程序是在编译器开始支持新规范前写的。c++标准委员会不想放弃那些已有的遵循返回0规范的代码,所以他们提供了另外形式的operator  new(以及operator   new[])以继续提供返回0功能。

3. malloc和new的区别
3.1 new 返回指定类型的指针,并且可以自动计算所需要大小。
比如:   
1) int *p;   
p = new int; //返回类型为int* 类型(整数型指针),分配大小为 sizeof(int);   
或:   
int* parr;   
parr = new int [100]; //返回类型为 int* 类型(整数型指针),分配大小为 sizeof(int) * 100;   

2) 而 malloc 则必须要由我们计算字节数,并且在返回后强行转换为实际类型的指针。   
int* p;   
p = (int *) malloc (sizeof(int)*128);//分配128个(可根据实际需要替换该数值)整型存储单元,并将这128个连续的整型存储单元的首地址存储到指针变量p中
double *pd=(double *) malloc (sizeof(double)*12);//分配12个double型存储单元,并将首地址存储到指针变量pd中

3.2 malloc 只管分配内存,并不能对所得的内存进行初始化,所以得到的一片新内存中,其值将是随机的。
除了分配及最后释放的方法不一样以外,通过malloc或new得到指针,在其它操作上保持一致。

4.有了malloc/free为什么还要new/delete?
1) malloc与free是C++/C语言的标准库函数,new/delete是C++的运算符。它们都可用于申请动态内存和释放内存。

2) 对于非内部数据类型的对象而言,光用maloc/free无法满足动态对象的要求。对象在创建的同时要自动执行构造函数,对象在消亡之前要自动执行析构函数。由于malloc/free是库函数而不是运算符,不在编译器控制权限之内,不能够把执行构造函数和析构函数的任务强加于malloc/free。
因此C++语言需要一个能完成动态内存分配和初始化工作的运算符new,以及一个能完成清理与释放内存工作的运算符delete。注意new/delete不是库函数。
我们不要企图用malloc/free来完成动态对象的内存管理,应该用new/delete。由于内部数据类型的“对象”没有构造与析构的过程,对它们而言malloc/free和new/delete是等价的。

3) 既然new/delete的功能完全覆盖了malloc/free,为什么C++不把malloc/free淘汰出局呢?这是因为C++程序经常要调用C函数,而C程序只能用malloc/free管理动态内存。
如果用free释放“new创建的动态对象”,那么该对象因无法执行析构函数而可能导致程序出错。如果用delete释放“malloc申请的动态内存”,结果也会导致程序出错,但是该程序的可读性很差。所以new/delete必须配对使用,malloc/free也一样。


8.C++中static关键字作用有哪些?!
1)static可以用作函数和变量的前缀,对于函数来讲,static的作用仅限于隐藏.在所有.c文件中,加了static只在本.c文件有效。

2)static的第二个作用是保持变量内容的持久。(static变量中的记忆功能和全局生存期)PS:如果作为static局部变量在函数内定义,它的生存期为整个源程序,但是其作用域仍与自动变量相同,只能在定义该变量的函数内使用该变量。退出该函数后, 尽管该变量还继续存在,但不能使用它。

3)static的第三个作用是默认初始化为0(static变量),定义矩阵或者字符串数组的时候比较方便。

4)static的第四个作用:C++中的类成员声明static(有些地方与以上作用重叠)
具体如下:
在类中声明static变量或者函数时,初始化时使用作用域运算符来标明它所属类,因此,静态数据成员是类的成员,而不是对象的成员,这样就出现以下作用:

(1)类的静态成员函数是属于整个类而非类的对象,所以它没有this指针,这就导致了它仅能访问类的静态数据和静态成员函数。

(2)不能将静态成员函数定义为虚函数。

(3)由于静态成员声明于类中,操作于其外,所以对其取地址操作,就多少有些特殊 ,变量地址是指向其数据类型的指针 ,函数地址类型是一个“nonmember函数指针”。

(4)由于静态成员函数没有this指针,所以就差不多等同于nonmember函数,结果就 产生了一个意想不到的好处:成为一个callback函数,使得我们得以将C++和C-based X Window系统结合,同时也成功的应用于线程函数身上。 (这条没遇见过)

(5)static并没有增加程序的时空开销,相反她还缩短了子类对父类静态成员的访问时间,节省了子类的内存空间。

(6)静态数据成员在<定义或说明>时前面加关键字static。

(7)静态数据成员是静态存储的,所以必须对它进行初始化。 (程序员手动初始化,否则编译时一般不会报错,但是在Link时会报错误)

(8)静态成员初始化与一般数据成员初始化不同:

初始化在类体外进行,而前面不加static,以免与一般静态变量或对象相混淆;
初始化时不加该成员的访问权限控制符private,public等;
初始化时使用作用域运算符来标明它所属类;
所以我们得出静态数据成员初始化的格式:
<数据类型><类名>::<静态数据成员名>=<值>

(9)为了防止父类的影响,可以在子类定义一个与父类相同的静态变量,以屏蔽父类的影响。这里有一点需要注意:我们说静态成员为父类和子类共享,但我们有重复定义了静态成员,这会不会引起错误呢?不会,我们的编译器采用了一种绝妙的手法:name-mangling 用以生成唯一的标志。


9.C++中const关键字作用有哪些?!
Const的使用
1、定义常量
(1)const修饰变量,以下两种定义形式在本质上是一样的。它的含义是:const修饰的类型为TYPE的变量value是不可变的。

TYPE const ValueName = value;
const TYPE ValueName = value;

(2)将const改为外部连接,作用于扩大至全局,编译时会分配内存,并且可以不进行初始化,仅仅作为声明,编译器认为在程序其他地方进行了定义.

extend const int ValueName = value;

2、指针使用CONST
(1)指针本身是常量不可变
(char*) const pContent;
const (char*) pContent;

(2)指针所指向的内容是常量不可变
const (char) *pContent;
(char) const *pContent;

(3)两者都不可变
const char* const pContent;

(4)还有其中区别方法,沿着*号划一条线:
如果const位于*的左侧,则const就是用来修饰指针所指向的变量,即指针指向为常量;
如果const位于*的右侧,const就是修饰指针本身,即指针本身是常量。

3、函数中使用CONST

(1)const修饰函数参数
a.传递过来的参数在函数内不可以改变(无意义,因为Var本身就是形参)

void function(const int Var);

b.参数指针所指内容为常量不可变

void function(const char* Var);

c.参数指针本身为常量不可变(也无意义,因为char* Var也是形参)

void function(char* const Var);

d.参数为引用,为了增加效率同时防止修改。修饰引用参数时:

void function(const Class& Var); //引用参数在函数内不可以改变

void function(const TYPE& Var); //引用参数在函数内为常量不可变

这样的一个const引用传递和最普通的函数按值传递的效果是一模一样的,他禁止对引用的对象的一切修改,唯一不同的是按值传递会先建立一个类对象的副本, 然后传递过去,而它直接传递地址,所以这种传递比按值传递更有效.另外只有引用的const传递可以传递一个临时对象,因为临时对象都是const属性, 且是不可见的,他短时间存在一个局部域中,所以不能使用指针,只有引用的const传递能够捕捉到这个家伙.

(2)const 修饰函数返回值
const修饰函数返回值其实用的并不是很多,它的含义和const修饰普通变量以及指针的含义基本相同。
a.const int fun1() //这个其实无意义,因为参数返回本身就是赋值。
b. const int * fun2() //调用时 const int *pValue = fun2();
//我们可以把fun2()看作成一个变量,即指针内容不可变。
c.int* const fun3()   //调用时 int * const pValue = fun2();
//我们可以把fun2()看作成一个变量,即指针本身不可变。

一般情况下,函数的返回值为某个对象时,如果将其声明为const时,多用于操作符的重载。通常,不建议用const修饰函数的返回值类型为某个对象或对某个对象引用的情况。原因如下:如果返回值为某个对象为const(const A test = A 实例)或某个对象的引用为const(const A& test = A实例) ,则返回值具有const属性,则返回实例只能访问类A中的公有(保护)数据成员和const成员函数,并且不允许对其进行赋值操作,这在一般情况下很少用到。

4、类相关CONST

(1)const修饰成员变量
const修饰类的成员函数,表示成员常量,不能被修改,同时它只能在初始化列表中赋值。
class A
{
…
const int nValue;         //成员常量不能被修改
…
A(int x): nValue(x) { } ; //只能在初始化列表中赋值
}

(2)const修饰成员函数
const修饰类的成员函数,则该成员函数不能修改类中任何非const成员函数。一般写在函数的最后来修饰。
class A
{
…
void function()const; //常成员函数, 它不改变对象的成员变量.

//也不能调用类中任何非const成员函数。
}

对于const类对象/指针/引用,只能调用类的const成员函数,因此,const修饰成员函数的最重要作用就是限制对于const对象的使用。

a. const成员函数不被允许修改它所在对象的任何一个数据成员。

b. const成员函数能够访问对象的const成员,而其他成员函数不可以。

(3)const修饰类对象/对象指针/对象引用

·             const修饰类对象表示该对象为常量对象,其中的任何成员都不能被修改。对于对象指针和对象引用也是一样。

·             const修饰的对象,该对象的任何非const成员函数都不能被调用,因为任何非const成员函数会有修改成员变量的企图。
例如:
class AAA
{
void func1();
void func2() const;
}
const AAA aObj;
aObj.func1(); ×
aObj.func2(); 正确

const AAA* aObj = new AAA();
aObj-> func1(); ×
aObj-> func2(); 正确
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  面试题