您的位置:首页 > 运维架构 > Linux

Linux GPIO Manipulation via Accessing Mapped Physical Memory

2017-08-20 03:36 836 查看
      Form my previous post, I have demonstrated how to manipulate GPIO via sysfs and I have pointed out the insufficiency of this manipulation for sysfs
speed is very slow. Sysfs accessing speed is in order of milli-second(KHz),  but the most peripheral chips communication speed are  in the order of micro-second(MHz). That fact leads the sysfs accessing is  limited for LEDs and buttons only.

     In this post, I will compliment the incompletion of sysfs accessing in low speed but without writing a driver to manipulating GPIO still. The driver is the extension of operation system (not only for Linux, aslo for Windows ). Applying a driver implicate
the operation system has been patched. It is very natural that the code workers for developing applications should not modify  the operation system as possible as they could. Even for the code workers in porting, they should install the driver as less as possible,
for the driver debugging makes the code worker in trepidation.

   

     




     I demonstrate how to read DHT11 data via GPIO in here.

     DHT11 is a sensor from 天朝 Celestial Empire widely adopted in the cheap electronic devices or the makers,  to measure humidity and Temperature via ONE GPIO pin. The communication speed between the sensor and host is  in the order of micro-sceond, a typical
middle-speed signal transmission rate.

    The DHT11 I use has been modularized instead of a naked one, it integrates with the required capacity and resistor, so I could wave away the circuit issue.

   the connection is extremely intuitive: for I adopt GPIO pin 18 as my the object of my accessing, I connect the data  pin to GPIO pin 18, Vcc to Vcc, ground to ground.

My Device is an OpenWRT system :

root@GL-AR150:/tmp# cat /proc/cpuinfo
system type  : Atheros AR9330 rev 1
machine   : TP-LINK TL-WR720N v3
processor  : 0
cpu model  : MIPS 24Kc V7.4
BogoMIPS  : 265.42
wait instruction : yes
microsecond timers : yes
tlb_entries  : 16
extra interrupt vector : yes
hardware watchpoint : yes, count: 4, address/irw mask: [0x0000, 0x0008, 0x0020, 0x0000]
isa   : mips1 mips2 mips32r1 mips32r2
ASEs implemented : mips16
shadow register sets : 1
kscratch registers : 0
core   : 0
VCED exceptions  : not available
VCEI exceptions  : not available


   一.  Look up the
Atheros AR9330 document, in the page 65,  The table :

AddressNameDescription
0x18040000GPIO_OEGeneral Purpose I/O Output Enable
0x18040004GPIO_INGeneral Purpose I/O Input Value
0x18040008GPIO_OUTGeneral Purpose I/O Output Value
0x1804000CGPIO_SETGeneral Purpose I/O Bit Set
0x18040010GPIO_CLEARGeneral Purpose I/O Per Bit Clear
That is :

  0. One bit represents one GPIO pin for all address.

1.  The address 0x1804000 is the base address of GPIOs,  which's bits could be set to specified if the pins are ouput or not (input).

2.  The bits in address 0x1804004 is for reading the input values, while the corresponding GPIO pins have been set as  input pins.

3. The bits in address 0x1804008 is for setting the values for output, while the corresponding GPIO pins have been set as output pins.

4. (Synonym for 3). Set the bits in 0x180400C means the values in the output pins  is 1.

5. (Synonym for 4). Set the bits in 0x1804010 means the values in the output pins  is 0.

The function to achieve those operation in C are :

#include <sys/mman.h>

#include <fcntl.h>

#include <errno.h>

#define GPIO_ADDR        0x18040000 // base address
#define GPIO_MEM_BLOCK_SIZE     (48)   // memory block size

int MappingGPIOToMemory(unsigned long **pp_gpio_address)
{
int mem_fd;

if ((mem_fd = open("/dev/mem", O_RDWR)) < 0)
{
printf("Open /dev/mem fail\r\n");
return -1;
}/*if */

*pp_gpio_address = (unsigned long*)mmap(NULL, GPIO_MEM_BLOCK_SIZE,
PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, GPIO_ADDR);

close(mem_fd);

if (*pp_gpio_address == MAP_FAILED)
{
printf("mapping memory fail\r\n");
printf("error message = %s\r\n", strerror(errno));
return -2;
}

}/*MappingGPIOToMemory*/

#define PIN_OUT        (1)
#define PIN_IN         (0)

void SetGPIODirection(unsigned long *p_gpio_address, int gpio_numer, int direction)
{
#define GPIO_OUTPUT_ENABLE_OFFSET   (0)

unsigned long value;
value = *(p_gpio_address + GPIO_OUTPUT_ENABLE_OFFSET);

if (PIN_IN == direction)
value &= ~(1 << gpio_numer);
else
value |= (1 << gpio_numer);

*(p_gpio_address + GPIO_OUTPUT_ENABLE_OFFSET) = value;

}/*SetGPIODirection*/

void SetGPIOValue(unsigned long *p_gpio_address, int gpio_numer, int value)
{

#if(1)

#define GPIO_OUT_VALUE_OFFSET    (2)

unsigned long full_register_value;

full_register_value = *(p_gpio_address + GPIO_OUT_VALUE_OFFSET);

if (0 == value)
full_register_value &= ~(1 << gpio_numer);
else
full_register_value |= (1 << gpio_numer);

*(p_gpio_address + GPIO_OUT_VALUE_OFFSET) = full_register_value;

#else

#define GPIO_SET_OFFSET      (3)
#define GPIO_CLEAR_OFFSET     (4)

if(0 == value)
*(p_gpio_address + GPIO_CLEAR_OFFSET) = (1 << gpio_numer);
else
*(p_gpio_address + GPIO_SET_OFFSET) = (1 << gpio_numer);

#endif

}/*SetGPIOValue*/

void GetGPIOValue(unsigned long *p_gpio_address, int gpio_numer, int *p_value)
{
#define GPIO_INPUT_VALUE_OFFSET    (1)
unsigned long full_register_value;

full_register_value = *(p_gpio_address + GPIO_INPUT_VALUE_OFFSET);

*p_value = (full_register_value >> gpio_numer) & 0x01;
}/*GetGPIOValue*/


And do not forget to call
munmap while the mapping address would not be used.

If you do not use the same CPU as mine, you need to implement those functions by inquiring data sheet of the CPU you use.

二. Understand the DHT11 communication data pockets.

DHT11 data sheet :
漢文,
English.

As the datasheet's instrcution, the procedure of read data from DHT11 be :

---Send init command to DHT11---
PULL_DOWN 18ms
PULL_UP  30 us

---DHT11 init responding--------

Receive low for 80 us
Receive high for 80 us

--Receiving Data---------------
--One bit datum--receiving-----

Receive low for 50 us

if the datum is 0
receiving high for 28 us
or (the datum is 1)
receiving high for 70 us

--To fetch next bit-------------

----Receiving total 5 byte------

--Check the sum of head 4 bytes equals with the last byte--


三. Implementation :

The full code be :

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#include <signal.h>

#include <sys/time.h>
#include <sys/mman.h>

#include <fcntl.h>

#include <errno.h>

#define GPIO_ADDR 					(0x18040000)
#define GPIO_MEM_BLOCK_SIZE 				(48)

int MappingGPIOToMemory(unsigned long **pp_gpio_address)
{
int mem_fd;

if ((mem_fd = open("/dev/mem", O_RDWR)) < 0)
{
printf("Open /dev/mem fail\r\n");
return -1;
}/*if */

*pp_gpio_address = (unsigned long*)mmap(NULL, GPIO_MEM_BLOCK_SIZE,
PROT_READ|PROT_WRITE, MAP_SHARED, mem_fd, GPIO_ADDR);

close(mem_fd);

if (*pp_gpio_address == MAP_FAILED)
{
printf("mapping memory fail\r\n");
printf("error message = %s\r\n", strerror(errno));
return -2;
}

}/*MappingGPIOToMemory*/

#define PIN_OUT 							(1)
#define PIN_IN 								(0)

void SetGPIODirection(unsigned long *p_gpio_address, int gpio_numer, int direction)
{
#define GPIO_OUTPUT_ENABLE_OFFSET			(0)

unsigned long value;
value = *(p_gpio_address + GPIO_OUTPUT_ENABLE_OFFSET);

if (PIN_IN == direction)
value &= ~(1 << gpio_numer);
else
value |= (1 << gpio_numer);

*(p_gpio_address + GPIO_OUTPUT_ENABLE_OFFSET) = value;

}/*SetGPIODirection*/

void SetGPIOValue(unsigned long *p_gpio_address, int gpio_numer, int value)
{

#if(1)

#define GPIO_OUT_VALUE_OFFSET				(2)

unsigned long full_register_value;

full_register_value = *(p_gpio_address + GPIO_OUT_VALUE_OFFSET);

if (0 == value)
full_register_value &= ~(1 << gpio_numer);
else
full_register_value |= (1 << gpio_numer);

*(p_gpio_address + GPIO_OUT_VALUE_OFFSET) = full_register_value;

#else

#define	GPIO_SET_OFFSET						(3)
#define GPIO_CLEAR_OFFSET					(4)

if(0 == value)
*(p_gpio_address + GPIO_CLEAR_OFFSET) = (1 << gpio_numer);
else
*(p_gpio_address + GPIO_SET_OFFSET) = (1 << gpio_numer);

#endif

}/*SetGPIOValue*/

void GetGPIOValue(unsigned long *p_gpio_address, int gpio_numer, int *p_value)
{
#define GPIO_INPUT_VALUE_OFFSET				(1)
unsigned long full_register_value;

full_register_value = *(p_gpio_address + GPIO_INPUT_VALUE_OFFSET);

*p_value = (full_register_value >> gpio_numer) & 0x01;
}/*GetGPIOValue*/

void delay_micro_sec(unsigned int delay_time_in_us)
{
struct timeval now;
struct timeval period;
struct timeval end;

gettimeofday(&now, NULL);

period.tv_sec = delay_time_in_us / 1000000;
period.tv_usec = delay_time_in_us % 1000000;

timeradd(&now, &period, &end);

while(timercmp(&now, &end, < ))
gettimeofday(&now, NULL);

}/*delay_micro_sec*/

int ReadDHT11Byte(unsigned long *p_gpio_address, int gpio_numer,
unsigned char *p_read_data)
{
int i;
int pin_value;
unsigned char one_byte_value, bit_value;
unsigned int over_time_cnt;
int is_the_headest_bit;
int endurable_time_in_usec;

is_the_headest_bit = 1;
one_byte_value = 0;

#define BUFFER_TIME_IN_USEC									(5)

for( i=0; i<8; i++) {

#define DHT11_INIT_PULL_UP_DURATION_IN_USEC					(80)
#define PREVIOUS_ONE_IN_HIGH_EXTERNAL_DURATION_IN_USEC		(70 - 28)

if(0 != is_the_headest_bit)
{
endurable_time_in_usec = DHT11_INIT_PULL_UP_DURATION_IN_USEC
+ BUFFER_TIME_IN_USEC;
is_the_headest_bit = 0;
}
else
{
endurable_time_in_usec = PREVIOUS_ONE_IN_HIGH_EXTERNAL_DURATION_IN_USEC
+ BUFFER_TIME_IN_USEC;
}/*is_the_headest_bit == true */

over_time_cnt = 0;
while(1)
{
GetGPIOValue(p_gpio_address, gpio_numer, &pin_value);
delay_micro_sec(1);

if(0 == pin_value)
break;

if( endurable_time_in_usec == over_time_cnt)
break;

over_time_cnt++;
}/*wait 0 */

if(endurable_time_in_usec == over_time_cnt)
{
#if(0)
printf("stage 1 fail\r\n");
#endif
return -1;
}

#define DATA_HINT_SIGNAL_DURATION_IN_USEC					(50)
endurable_time_in_usec = DATA_HINT_SIGNAL_DURATION_IN_USEC + BUFFER_TIME_IN_USEC;
over_time_cnt = 0;
while(1)
{
GetGPIOValue(p_gpio_address, gpio_numer, &pin_value);
delay_micro_sec(1);

if(0 != pin_value)
break;

if(endurable_time_in_usec == over_time_cnt)
{
break;
}

over_time_cnt++;
}/*wait 1*/

if(endurable_time_in_usec == over_time_cnt)
{
#if(0)
printf("stage 2 fail\r\n");
#endif
return -2;
}

#define SIGNAL_ZERO_DURATION_IN_USEC						(28)

delay_micro_sec(SIGNAL_ZERO_DURATION_IN_USEC);

GetGPIOValue(p_gpio_address, gpio_numer, &pin_value);

if(0 == pin_value)
bit_value = 0;
else
bit_value = 1;

one_byte_value <<= 1;
one_byte_value |= bit_value;

}/*for i */

*p_read_data = one_byte_value;

return 0;
}/*ReadDHT11OneByte*/

void InitDHT11(unsigned long *p_gpio_address, int gpio_numer)
{
unsigned int over_time_cnt;

SetGPIODirection(p_gpio_address, gpio_numer, PIN_OUT);

#define HOST_PULL_DOWN_DURATION_IN_USEC						(20*1000)
SetGPIOValue(p_gpio_address, gpio_numer, 0);
delay_micro_sec(HOST_PULL_DOWN_DURATION_IN_USEC);

#define HOST_PULL_UP_DURATION_IN_USEC						(20)
SetGPIOValue(p_gpio_address, gpio_numer, 1);
delay_micro_sec(HOST_PULL_UP_DURATION_IN_USEC);

SetGPIODirection(p_gpio_address, gpio_numer, PIN_IN);

#define WAIT_DHT11_INIT_RESP_PULL_DOWN_IN_USEC				(40)

over_time_cnt = 0;
while(1)
{
int pin_value;

GetGPIOValue(p_gpio_address, gpio_numer, &pin_value);
delay_micro_sec(1);

if(0 == pin_value)
break;

if(WAIT_DHT11_INIT_RESP_PULL_DOWN_IN_USEC == over_time_cnt)
break;

over_time_cnt++;
}/*wait 0*/

#define DHT11_INIT_RESP_PULL_DOWN_DURATION_IN_USEC			(80)

over_time_cnt = 0;
while(1)
{
int pin_value;

GetGPIOValue(p_gpio_address, gpio_numer, &pin_value);
delay_micro_sec(1);

if(0 != pin_value)
break;

if(DHT11_INIT_RESP_PULL_DOWN_DURATION_IN_USEC == over_time_cnt)
break;

over_time_cnt++;
}/*wait 1*/

}/*InitDHT11*/

int ReadDHT11(unsigned long *p_gpio_address, int gpio_numer,
int *p_humidity, int *p_temperature)
{
int i;
int status;
unsigned char raw_DHT11_data[8];

status = 0;
memset(&raw_DHT11_data[0], 0, 5);

InitDHT11(p_gpio_address, gpio_numer);

for(i = 0; i < 5; i++)
{
if(0 != ReadDHT11Byte(p_gpio_address, gpio_numer, &raw_DHT11_data[i]))
{
status = -1;
goto End_Of_Read_DHT11;
}
}/*for i*/

if(0 == raw_DHT11_data[0] && 0 == raw_DHT11_data[1]
&& 0 == raw_DHT11_data[2] && 0 == raw_DHT11_data[3]
&& 0 == raw_DHT11_data[4])
{
status = -1;
goto End_Of_Read_DHT11;
}/*if all zero*/

status = -2;

if(raw_DHT11_data[4] == raw_DHT11_data[0] + raw_DHT11_data[1]
+ raw_DHT11_data[2] + raw_DHT11_data[3])
{
*p_humidity = (int)raw_DHT11_data[0];
*p_temperature = (int)raw_DHT11_data[2];

status = 0;
}/*if match checking code*/

End_Of_Read_DHT11:
return status;
}/*ReadDHT11*/

unsigned long *p_gpio_address = NULL;

void InterruptSignalHandlingRoutine(int sig)
{
if(NULL != p_gpio_address)
munmap(p_gpio_address, GPIO_MEM_BLOCK_SIZE);
p_gpio_address = NULL;

exit(0);
}/*InterruptSignalHandlingRoutine*/

void print_current_time(void)
{
time_t t;
struct tm calendar_time;
t = time(NULL);
localtime_r(&t, &calendar_time);

printf("now time: %d-%d-%d %d:%d:%d, %s(+%d)\n",
calendar_time.tm_year + 1900, calendar_time.tm_mon + 1,
calendar_time.tm_mday,
calendar_time.tm_hour, calendar_time.tm_min, calendar_time.tm_sec,
calendar_time.tm_zone, (int)calendar_time.tm_gmtoff/3600);
}/*print_current_time*/

main(int argc, char *argv[])
{

int humidity, temperature;
int executed_count;
int succeeded_count;
int g_gpio_number;

signal(SIGINT, InterruptSignalHandlingRoutine);

if(2 > argc)
{
printf("%s should be followed by led_gpio_pin_number\r\n", argv[0]);
return -1;
}

{
char *p_temp;
g_gpio_number = strtol(argv[1], &p_temp, 10);
if(argv[1]== p_temp)
{
printf("%s is not a number for specifying gpio pin number\r\n", argv[1]);
return -2;
}/*not a number*/

}/*local variable*/

MappingGPIOToMemory(&p_gpio_address);

#if(1)

while(1)
{
humidity = temperature = 0;

#if(1)
do
{
if(0 == ReadDHT11(p_gpio_address, g_gpio_number,
&humidity, &temperature))
{
break;
}/*if*/
}while(1);
#else
/*I do not like this style for while loop content does not exist*/
while(0 != ReadDHT11(p_gpio_address, g_gpio_number,
&humidity, &temperature));
#endif
printf("\r\n");
printf("humidity = %d, temperature = %d\r\n",
humidity, temperature);
print_current_time();

usleep(5*1000*1000);
}/*while 1*/

#else

succeeded_count = executed_count = 0;

while(1)
{
humidity = temperature = 0;
if(0 == ReadDHT11(p_gpio_address, g_gpio_number, &humidity, &temperature))
{
#if(0)
printf("humidity = %d, temperature = %d\r\n",
humidity, temperature);
#endif
succeeded_count++;
}

executed_count++;

if(100 == executed_count)
{
printf("yield rate = %3.2f\r\n", succeeded_count/(float)executed_count);
succeeded_count = executed_count = 0;
}

}/*while 1*/
#endif

if(NULL != p_gpio_address)
munmap(p_gpio_address, GPIO_MEM_BLOCK_SIZE);
p_gpio_address = NULL;

return 0;
}/*main*/


Note : The function delay_micro_sec could not been replaced as usleep : while calling usleep, the system would current task to the others, that would entail the delaying time is not accurate enough, especially the time interval (sleep time) is in the order
of micro-second.

 The makefile is

OPENWRT_ROOT=/home/gaiger/openwrt-cc/staging_dir
OPENWRT_TOOLCHAIN_PATH = $(OPENWRT_ROOT)/toolchain-mips_34kc_gcc-4.8-linaro_uClibc-0.9.33.2

CC = $(OPENWRT_TOOLCHAIN_PATH)/bin/mips-openwrt-linux-gcc

CFLAGS := -O2
all:
$(CC)  $(CFLAGS)   main.c  -o dht11_measure
clean:
rm dht11_measure -f


The code do not rely on non-default library, the Makefile call the cross-compiler( it should be called as parasitic compiler) for compilation only.

Run the binary :

root@GL-AR150:/tmp# ./dht11_measure 18

humidity = 45, temperature = 27
now time: 2017-8-20 1:34:21, CST(+8)

humidity = 32, temperature = 27
now time: 2017-8-20 1:34:26, CST(+8)

humidity = 50, temperature = 27
now time: 2017-8-20 1:34:32, CST(+8)

humidity = 20, temperature = 27
now time: 2017-8-20 1:34:37, CST(+8)


  It is the beginning month of Autumn, it's still very hot in Taiwan's midnight.

 若爾欲曉何以內存射映之法 摯取DS18B20所揣之值 可見余人下文於咨
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  linux openwrt gpio