您的位置:首页 > 编程语言 > Python开发

混合高斯模型的EM求解(Mixtures of Gaussians)及Python实现源代码

2017-06-23 10:58 429 查看
今天为大家带来混合高斯模型的EM推导求解过程。













所有代码例如以下!

def NDimensionGaussian(X_vector,U_Mean,CovarianceMatrix):
#X=numpy.mat(X_vector)
X=X_vector
D=numpy.shape(X)[0]
#U=numpy.mat(U_Mean)
U=U_Mean
#CM=numpy.mat(CovarianceMatrix)
CM=CovarianceMatrix
Y=X-U
temp=Y.transpose() * CM.I * Y
result=(1.0/((2*numpy.pi)**(D/2)))*(1.0/(numpy.linalg.det(CM)**0.5))*numpy.exp(-0.5*temp)
return result

def CalMean(X):
D,N=numpy.shape(X)
MeanVector=numpy.mat(numpy.zeros((D,1)))
for d in range(D):
for n in range(N):
MeanVector[d,0] += X[d,n]
MeanVector[d,0] /= float(N)
return MeanVector

def CalCovariance(X,MV):
D,N=numpy.shape(X)
CoV=numpy.mat(numpy.zeros((D,D)))
for n in range(N):
Temp=X[:,n]-MV
CoV += Temp*Temp.transpose()
CoV /= float(N)
return CoV

def CalEnergy(Xn,Pik,Uk,Cov):
D,N=numpy.shape(Xn)
D_k,K=numpy.shape(Uk)
if D!=D_k:
print ('dimension not equal, break')
return

energy=0.0
for n_iter in range(N):
temp=0
for k_iter in range(K):
temp += Pik[0,k_iter] * NDimensionGaussian(Xn[:,n_iter],Uk[:,k_iter],Cov[k_iter])
energy += numpy.log(temp)
return float(energy)

def SequentialEMforMixGaussian(InputData,K):
#初始化piK
pi_Cof=numpy.mat(numpy.ones((1,K))*(1.0/float(K)))
X=numpy.mat(InputData)
X_mean=CalMean(X)
print (X_mean)
X_cov=CalCovariance(X,X_mean)
print (X_cov)
#初始化uK,当中第k列表示第k个高斯函数的均值向量
#X为D维,N个样本点
D,N=numpy.shape(X)
print (D,N)
UK=numpy.mat(numpy.zeros((D,K)))
for d_iter in range(D):
for k_iter in range(K):
UK[d_iter,k_iter] = X_mean[d_iter,0] + (-1)**k_iter + (-1)**d_iter
print (UK)
#初始化k个协方差矩阵的列表
List_cov=[]

for k_iter in range(K):
List_cov.append(numpy.mat(numpy.eye(X[:,0].size)))
print (List_cov)

List_cov_new=copy.deepcopy(List_cov)
rZnk=numpy.mat(numpy.zeros((N,K)))
denominator=numpy.mat(numpy.zeros((N,1)))
rZnk_new=numpy.mat(numpy.zeros((N,K)))

Nk=0.5*numpy.mat(numpy.ones((1,K)))
print (Nk)
Nk_new=numpy.mat(numpy.zeros((1,K)))
UK_new=numpy.mat(numpy.zeros((D,K)))
pi_Cof_new=numpy.mat(numpy.zeros((1,K)))

for n_iter in range(1,N):
#rZnk=pi_k*Gaussian(Xn|uk,Cov_k)/sum(pi_j*Gaussian(Xn|uj,Cov_j))
for k_iter in range(K):
rZnk_new[n_iter,k_iter] = pi_Cof[0,k_iter] * NDimensionGaussian(X[:,n_iter],UK[:,k_iter],List_cov[k_iter])
denominator[n_iter,0] += rZnk_new[n_iter,k_iter]
for k_iter in range(K):
rZnk_new[n_iter,k_iter] /= denominator[n_iter,0]
print ('rZnk_new', rZnk_new[n_iter,k_iter],'\n')
for k_iter in range(K):
Nk_new[0,k_iter] = Nk[0,k_iter] + rZnk_new[n_iter,k_iter] - rZnk[n_iter,k_iter]
print ('Nk_new',Nk_new,'\n')
##############当前有(n_iter+1)样本###########################
pi_Cof_new[0,k_iter] = Nk_new[0,k_iter]/float(n_iter+1)
print ('pi_Cof_new',pi_Cof_new,'\n')
UK_new[:,k_iter] = UK[:,k_iter] + ( (rZnk_new[n_iter,k_iter] - rZnk[n_iter,k_iter])/float(Nk_new[0,k_iter]) ) * (X[:,n_iter]-UK[:,k_iter])
print ('UK_new',UK_new,'\n')
Temp = X[:,n_iter] - UK_new[:,k_iter]
List_cov_new[k_iter] = List_cov[k_iter] + ((rZnk_new[n_iter,k_iter] - rZnk[n_iter,k_iter])/float(Nk_new[0,k_iter]))*(Temp*Temp.transpose()-List_cov[k_iter])
print ('List_cov_new',List_cov_new,'\n')

rZnk=copy.deepcopy(rZnk_new)
pi_Cof=copy.deepcopy(pi_Cof_new)
UK_new=copy.deepcopy(UK)
List_cov=copy.deepcopy(List_cov_new)
print (pi_Cof,UK_new,List_cov)
return pi_Cof,UK_new,List_cov

def BatchEMforMixGaussian(InputData,K,MaxIter):
#初始化piK
pi_Cof=numpy.mat(numpy.ones((1,K))*(1.0/float(K)))
X=numpy.mat(InputData)
X_mean=CalMean(X)
print (X_mean)
X_cov=CalCovariance(X,X_mean)
print (X_cov)
#初始化uK,当中第k列表示第k个高斯函数的均值向量
#X为D维,N个样本点
D,N=numpy.shape(X)
print (D,N)
UK=numpy.mat(numpy.zeros((D,K)))
for d_iter in range(D):
for k_iter in range(K):
UK[d_iter,k_iter] = X_mean[d_iter,0] + (-1)**k_iter + (-1)**d_iter
print (UK)
#初始化k个协方差矩阵的列表
List_cov=[]

for k_iter in range(K):
List_cov.append(numpy.mat(numpy.eye(X[:,0].size)))
print (List_cov)

energy_new=0
energy_old=CalEnergy(X,pi_Cof,UK,List_cov)
print (energy_old)
currentIter=0
while True:
currentIter += 1

List_cov_new=[]
rZnk=numpy.mat(numpy.zeros((N,K)))
denominator=numpy.mat(numpy.zeros((N,1)))
Nk=numpy.mat(numpy.zeros((1,K)))
UK_new=numpy.mat(numpy.zeros((D,K)))
pi_new=numpy.mat(numpy.zeros((1,K)))

#rZnk=pi_k*Gaussian(Xn|uk,Cov_k)/sum(pi_j*Gaussian(Xn|uj,Cov_j))
for n_iter in range(N):
for k_iter in range(K):
rZnk[n_iter,k_iter] = pi_Cof[0,k_iter] * NDimensionGaussian(X[:,n_iter],UK[:,k_iter],List_cov[k_iter])
denominator[n_iter,0] += rZnk[n_iter,k_iter]
for k_iter in range(K):
rZnk[n_iter,k_iter] /= denominator[n_iter,0]
#print 'rZnk', rZnk[n_iter,k_iter]

#pi_new=sum(rZnk)
for k_iter in range(K):
for n_iter in range(N):
Nk[0,k_iter] += rZnk[n_iter,k_iter]
pi_new[0,k_iter] = Nk[0,k_iter]/(float(N))
#print 'pi_k_new',pi_new[0,k_iter]

#uk_new= (1/sum(rZnk))*sum(rZnk*Xn)
for k_iter in range(K):
for n_iter in range(N):
UK_new[:,k_iter] += (1.0/float(Nk[0,k_iter]))*rZnk[n_iter,k_iter]*X[:,n_iter]
#print 'UK_new',UK_new[:,k_iter]

for k_iter in range(K):
X_cov_new=numpy.mat(numpy.zeros((D,D)))
for n_iter in range(N):
Temp = X[:,n_iter] - UK_new[:,k_iter]
X_cov_new += (1.0/float(Nk[0,k_iter]))*rZnk[n_iter,k_iter] * Temp * Temp.transpose()
#print 'X_cov_new',X_cov_new
List_cov_new.append(X_cov_new)

energy_new=CalEnergy(X,pi_new,UK_new,List_cov)
print ('energy_new',energy_new)
#print pi_new
#print UK_new
#print List_cov_new
if energy_old>=energy_new or currentIter>MaxIter:
UK=copy.deepcopy(UK_new)
pi_Cof=copy.deepcopy(pi_new)
List_cov=copy.deepcopy(List_cov_new)
break
else:
UK=copy.deepcopy(UK_new)
pi_Cof=copy.deepcopy(pi_new)
List_cov=copy.deepcopy(List_cov_new)
energy_old=energy_new

return pi_Cof,UK,List_cov
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: