您的位置:首页 > 其它

U-Boot启动过程完全分析

2017-06-13 14:06 441 查看
转载1.1 U-Boot工作过程 U-Boot启动内核的过程可以分为两个阶段,两个阶段的功能如下: (1)第一阶段的功能 ? 硬件设备初始化 ? 加载U-Boot第二阶段代码到RAM空间 ? 设置好栈 ? 跳转到第二阶段代码入口 (2)第二阶段的功能 ? 初始化本阶段使用的硬件设备 ? 检测系统内存映射 ? 将内核从Flash读取到RAM中 ? 为内核设置启动参数 ? 调用内核

1.1.1 U-Boot启动第一阶段代码分析

第一阶段对应的文件是cpu/arm920t/start.S和board/samsung/mini2440/lowlevel_init.S。 U-Boot启动第一阶段流程如下:

图 2.1 U-Boot启动第一阶段流程 根据cpu/arm920t/u-boot.lds中指定的连接方式: ENTRY(_start) SECTIONS { . = 0x00000000; . = ALIGN(4); .text : { cpu/arm920t/start.o (.text) board/samsung/mini2440/lowlevel_init.o (.text) board/samsung/mini2440/nand_read.o (.text) *(.text) } … … } 第一个链接的是cpu/arm920t/start.o,因此u-boot.bin的入口代码在cpu/arm920t/start.o中,其源代码在cpu/arm920t/start.S中。下面我们来分析cpu/arm920t/start.S的执行。 1. 硬件设备初始化 (1)设置异常向量 cpu/arm920t/start.S开头有如下的代码: .globl _start _start: b start_code /* 复位 */ ldr pc, _undefined_instruction /* 未定义指令向量 */ ldr pc, _software_interrupt /* 软件中断向量 */ ldr pc, _prefetch_abort /* 预取指令异常向量 */ ldr pc, _data_abort /* 数据操作异常向量 */ ldr pc, _not_used /* 未使用 */ &nb
20000
sp; ldr pc, _irq /* irq中断向量 */ ldr pc, _fiq /* fiq中断向量 */ /* 中断向量表入口地址 */ _undefined_instruction: .word undefined_instruction _software_interrupt: .word software_interrupt _prefetch_abort: .word prefetch_abort _data_abort: .word data_abort _not_used: .word not_used _irq: .word irq _fiq: .word fiq .balignl 16,0xdeadbeef 以上代码设置了ARM异常向量表,各个异常向量介绍如下: 表 2.1 ARM异常向量表
地址 异常 进入模式描述
0x00000000 复位管理模式复位电平有效时,产生复位异常,程序跳转到复位处理程序处执行
0x00000004 未定义指令未定义模式遇到不能处理的指令时,产生未定义指令异常
0x00000008软件中断管理模式执行SWI指令产生,用于用户模式下的程序调用特权操作指令
0x0000000c预存指令中止模式处理器预取指令的地址不存在,或该地址不允许当前指令访问,产生指令预取中止异常
0x00000010数据操作中止模式处理器数据访问指令的地址不存在,或该地址不允许当前指令访问时,产生数据中止异常
0x00000014未使用未使用未使用
0x00000018IRQIRQ外部中断请求有效,且CPSR中的I位为0时,产生IRQ异常
0x0000001cFIQFIQ快速中断请求引脚有效,且CPSR中的F位为0时,产生FIQ异常
在cpu/arm920t/start.S中还有这些异常对应的异常处理程序。当一个异常产生时,CPU根据异常号在异常向量表中找到对应的异常向量,然后执行异常向量处的跳转指令,CPU就跳转到对应的异常处理程序执行。 其中复位异常向量的指令“b start_code”决定了U-Boot启动后将自动跳转到标号“start_code”处执行。 (2)CPU进入SVC模式 start_code: /* * set the cpu to SVC32 mode */ mrs r0, cpsr bic r0, r0, #0x1f /*工作模式位清零 */ orr r0, r0, #0xd3 /*工作模式位设置为“10011”(管理模式),并将中断禁止位和快中断禁止位置1 */ msr cpsr, r0 以上代码将CPU的工作模式位设置为管理模式,并将中断禁止位和快中断禁止位置一,从而屏蔽了IRQ和FIQ中断。 3)设置控制寄存器地址 # if defined(CONFIG_S3C2400) # define pWTCON 0x15300000 # define INTMSK 0x14400008 # define CLKDIVN 0x14800014 #else /* s3c2410与s3c2440下面4个寄存器地址相同 */ # define pWTCON 0x53000000 /* WATCHDOG控制寄存器地址 */ # define INTMSK 0x4A000008 /* INTMSK寄存器地址 */ # define INTSUBMSK 0x4A00001C /* INTSUBMSK寄存器地址 */ # define CLKDIVN 0x4C000014 /* CLKDIVN寄存器地址 */ # endif 对与s3c2440开发板,以上代码完成了WATCHDOG,INTMSK,INTSUBMSK,CLKDIVN四个寄存器的地址的设置。各个寄存器地址参见参考文献[4] 。 4)关闭看门狗 ldr r0, =pWTCON mov r1, #0x0 str r1, [r0] /* 看门狗控制器的最低位为0时,看门狗不输出复位信号 */ 以上代码向看门狗控制寄存器写入0,关闭看门狗。否则在U-Boot启动过程中,CPU将不断重启。 5)屏蔽中断 /* * mask all IRQs by setting all bits in the INTMR - default */ mov r1, #0xffffffff /* 某位被置1则对应的中断被屏蔽 */ ldr r0, =INTMSK str r1, [r0] INTMSK是主中断屏蔽寄存器,每一位对应SRCPND(中断源引脚寄存器)中的一位,表明SRCPND相应位代表的中断请求是否被CPU所处理。 根据参考文献4,INTMSK寄存器是一个32位的寄存器,每位对应一个中断,向其中写入0xffffffff就将INTMSK寄存器全部位置一,从而屏蔽对应的中断。 # if defined(CONFIG_S3C2440) ldr r1, =0x7fff ldr r0, =INTSUBMSK str r1, [r0] # endif INTSUBMSK每一位对应SUBSRCPND中的一位,表明SUBSRCPND相应位代表的中断请求是否被CPU所处理。 根据参考文献4,INTSUBMSK寄存器是一个32位的寄存器,但是只使用了低15位。向其中写入0x7fff就是将INTSUBMSK寄存器全部有效位(低15位)置一,从而屏蔽对应的中断。 (6)设置MPLLCON,UPLLCON, CLKDIVN # if defined(CONFIG_S3C2440) #define MPLLCON 0x4C000004 #define UPLLCON 0x4C000008 ldr r0, =CLKDIVN mov r1, #5 str r1, [r0] ldr r0, =MPLLCON ldr r1, =0x7F021 str r1, [r0] ldr r0, =UPLLCON ldr r1, =0x38022 str r1, [r0] # else /* FCLK:HCLK:PCLK = 1:2:4 */ /* default FCLK is 120 MHz ! */ ldr r0, =CLKDIVN mov r1, #3 str r1, [r0] #endif CPU上电几毫秒后,晶振输出稳定,FCLK=Fin(晶振频率),CPU开始执行指令。但实际上,FCLK可以高于Fin,为了提高系统时钟,需要用软件来启用PLL。这就需要设置CLKDIVN,MPLLCON,UPLLCON这3个寄存器。 CLKDIVN寄存器用于设置FCLK,HCLK,PCLK三者间的比例,可以根据表2.2来设置。 表 2.2 S3C2440 的CLKDIVN寄存器格式
CLKDIVN说明初始值
HDIVN[2:1]00 : HCLK = FCLK/1. 01 : HCLK = FCLK/2. 10 : HCLK = FCLK/4 (当 CAMDIVN[9] = 0 时) HCLK= FCLK/8 (当 CAMDIVN[9] = 1 时) 11 : HCLK = FCLK/3 (当 CAMDIVN[8] = 0 时) HCLK = FCLK/6 (当 CAMDIVN[8] = 1时)00
PDIVN[0]0: PCLK = HCLK/1 1: PCLK = HCLK/20
设置CLKDIVN为5,就将HDIVN设置为二进制的10,由于CAMDIVN[9]没有被改变过,取默认值0,因此HCLK = FCLK/4。PDIVN被设置为1,因此PCLK= HCLK/2。因此分频比FCLK:HCLK:PCLK = 1:4:8 。 MPLLCON寄存器用于设置FCLK与Fin的倍数。MPLLCON的位[19:12]称为MDIV,位[9:4]称为PDIV,位[1:0]称为SDIV。 对于S3C2440,FCLK与Fin的关系如下面公式: MPLL(FCLK) = (2×m×Fin)/(p×

) 其中: m=MDIC+8,p=PDIV+2,s=SDIV MPLLCON与UPLLCON的值可以根据参考文献4中“PLL VALUE SELECTION TABLE”设置。该表部分摘录如下: 表 2.3 推荐PLL值
输入频率输出频率MDIVPDIVSDIV
12.0000MHz48.00 MHz56(0x38)22
12.0000MHz405.00 MHz127(0x7f)21
当mini2440系统主频设置为405MHZ,USB时钟频率设置为48MHZ时,系统可以稳定运行,因此设置MPLLCON与UPLLCON为: MPLLCON=(0x7f<<12) | (0x02<<4) | (0x01) = 0x7f021 UPLLCON=(0x38<<12) | (0x02<<4) | (0x02) = 0x38022 7)关闭MMUcache 接着往下看: #ifndef CONFIG_SKIP_LOWLEVEL_INIT bl cpu_init_crit #endif cpu_init_crit这段代码在U-Boot正常启动时才需要执行,若将U-Boot从RAM中启动则应该注释掉这段代码。 下面分析一下cpu_init_crit到底做了什么: 320 #ifndef CONFIG_SKIP_LOWLEVEL_INIT 321 cpu_init_crit: 322 /* 323 * 使数据cache与指令cache无效 */ 324 */ 325 mov r0, #0 326 mcr p15, 0, r0, c7, c7, 0 /* 向c7写入0将使ICache与DCache无效*/ 327 mcr p15, 0, r0, c8, c7, 0 /* 向c8写入0将使TLB失效 */ 328 329 /* 330 * disable MMU stuff and caches 331 */ 332 mrc p15, 0, r0, c1, c0, 0 /* 读出控制寄存器到r0中 */ 333 bic r0, r0, #0x00002300 @ clear bits 13, 9:8 (--V- --RS) 334 bic r0, r0, #0x00000087 @ clear bits 7, 2:0 (B--- -CAM) 335 orr r0, r0, #0x00000002 @ set bit 2 (A) Align 336 orr r0, r0, #0x00001000 @ set bit 12 (I) I-Cache 337 mcr p15, 0, r0, c1, c0, 0 /* 保存r0到控制寄存器 */ 338 339 /* 340 * before relocating, we have to setup RAM timing 341 * because memory timing is board-dependend, you will 342 * find a lowlevel_init.S in your board directory. 343 */ 344 mov ip, lr 345 346 bl lowlevel_init 347 348 mov lr, ip 349 mov pc, lr 350 #endif /* CONFIG_SKIP_LOWLEVEL_INIT */ 代码中的c0,c1,c7,c8都是ARM920T的协处理器CP15的寄存器。其中c7是cache控制寄存器,c8是TLB控制寄存器。325~327行代码将0写入c7、c8,使Cache,TLB内容无效。 第332~337行代码关闭了MMU。这是通过修改CP15的c1寄存器来实现的,先看CP15的c1寄存器的格式(仅列出代码中用到的位): 表 2.3 CP15的c1寄存器格式(部分)
1514131211109876543210
..VI..RSB....CAM
各个位的意义如下: V : 表示异常向量表所在的位置,0:异常向量在0x00000000;1:异常向量在 0xFFFF0000
I : 0 :关闭ICaches;1 :开启ICaches
R、S : 用来与页表中的描述符一起确定内存的访问权限
B : 0 :CPU为小字节序;1 : CPU为大字节序
C : 0:关闭DCaches;1:开启DCaches
A : 0:数据访问时不进行地址对齐检查;1:数据访问时进行地址对齐检查
M : 0:关闭MMU;1:开启MMU 332~337行代码将c1的 M位置零,关闭了MMU。 (8)初始化RAM控制寄存器 其中的lowlevel_init就完成了内存初始化的工作,由于内存初始化是依赖于开发板的,因此lowlevel_init的代码一般放在board下面相应的目录中。对于mini2440,lowlevel_init在board/samsung/mini2440/lowlevel_init.S中定义如下: 45 #define BWSCON 0x48000000 /* 13个存储控制器的开始地址 */ … … 129 _TEXT_BASE: 130 .word TEXT_BASE 131 132 .globl lowlevel_init 133 lowlevel_init: 134 /* memory control configuration */ 135 /* make r0 relative the current location so that it */ 136 /* reads SMRDATA out of FLASH rather than memory ! */ 137 ldr r0, =SMRDATA 138 ldr r1, _TEXT_BASE 139 sub r0, r0, r1 /* SMRDATA减 _TEXT_BASE就是13个寄存器的偏移地址 */ 140 ldr r1, =BWSCON /* Bus Width Status Controller */ 141 add r2, r0, #13*4 142 0: 143 ldr r3, [r0], #4 /*将13个寄存器的值逐一赋值给对应的寄存器*/ 144 str r3, [r1], #4 145 cmp r2, r0 146 bne 0b 147 148 /* everything is fine now */ 149 mov pc, lr 150 151 .ltorg 152 /* the literal pools origin */ 153 154 SMRDATA: /* 下面是13个寄存器的值 */ 155 .word … … 156 .word … … … … lowlevel_init初始化了13个寄存器来实现RAM时钟的初始化。lowlevel_init函数对于U-Boot从NAND Flash或NOR Flash启动的情况都是有效的。 U-Boot.lds链接脚本有如下代码: .text : { cpu/arm920t/start.o (.text) board/samsung/mini2440/lowlevel_init.o (.text) board/samsung/mini2440/nand_read.o (.text) … … } board/samsung/mini2440/lowlevel_init.o将被链接到cpu/arm920t/start.o后面,因此board/samsung/mini2440/lowlevel_init.o也在U-Boot的前4KB的代码中。 U-Boot在NAND Flash启动时,lowlevel_init.o将自动被读取到CPU内部4KB的内部RAM中。因此第137~146行的代码将从CPU内部RAM中复制寄存器的值到相应的寄存器中。 对于U-Boot在NOR Flash启动的情况,由于U-Boot连接时确定的地址是U-Boot在内存中的地址,而此时U-Boot还在NOR Flash中,因此还需要在NOR Flash中读取数据到RAM中。 由于NOR Flash的开始地址是0,而U-Boot的加载到内存的起始地址是TEXT_BASE,SMRDATA标号在Flash的地址就是SMRDATA-TEXT_BASE。 综上所述,lowlevel_init的作用就是将SMRDATA开始的13个值复制给开始地址[BWSCON]的13个寄存器,从而完成了存储控制器的设置。 (9)复制U-Boot第二阶段代码到RAM cpu/arm920t/start.S原来的代码是只支持从NOR Flash启动的,经过修改现在U-Boot在NOR Flash和NAND Flash上都能启动了,实现的思路是这样的: bl bBootFrmNORFlash /* 判断U-Boot是在NAND Flash还是NOR Flash启动 */ cmp r0, #0 /* r0存放bBootFrmNORFlash函数返回值,若返回0表示NAND Flash启动,否则表示在NOR Flash启动 */ beq nand_boot /* 跳转到NAND Flash启动代码 */ /* NOR Flash启动的代码 */ b stack_setup /* 跳过NAND Flash启动的代码 */ nand_boot: /* NAND Flash启动的代码 */ stack_setup: /* 其他代码 */ 其中bBootFrmNORFlash函数作用是判断U-Boot是在NAND Flash启动还是NOR Flash启动,若在NOR Flash启动则返回1,否则返回0。根据ATPCS规则,函数返回值会被存放在r0寄存器中,因此调用bBootFrmNORFlash函数后根据r0的值就可以判断U-Boot在NAND Flash启动还是NOR Flash启动。bBootFrmNORFlash函数在board/samsung/mini2440/nand_read.c中定义如下: int bBootFrmNORFlash(void) { volatile unsigned int *pdw = (volatile unsigned int *)0; unsigned int dwVal; dwVal = *pdw; /* 先记录下原来的数据 */ *pdw = 0x12345678; if (*pdw != 0x12345678) /* 写入失败,说明是在NOR Flash启动 */ { return 1; } else /* 写入成功,说明是在NAND Flash启动 */ { *pdw = dwVal; /* 恢复原来的数据 */ return 0; } } 无论是从NOR Flash还是从NAND Flash启动,地址0处为U-Boot的第一条指令“ b start_code”。 对于从NAND Flash启动的情况,其开始4KB的代码会被自动复制到CPU内部4K内存中,因此可以通过直接赋值的方法来修改。 对于从NOR Flash启动的情况,NOR Flash的开始地址即为0,必须通过一定的命令序列才能向NOR Flash中写数据,所以可以根据这点差别来分辨是从NAND Flash还是NOR Flash启动:向地址0写入一个数据,然后读出来,如果发现写入失败的就是NOR Flash,否则就是NAND Flash。 下面来分析NOR Flash启动部分代码: 208 adr r0, _start /* r0 <- current position of code */ 209 ldr r1, _TEXT_BASE /* test if we run from flash or RAM */ /* 判断U-Boot是否是下载到RAM中运行,若是,则不用 再复制到RAM中了,这种情况通常在调试U-Boot时才发生 */ 210 cmp r0, r1 /*_start等于_TEXT_BASE说明是下载到RAM中运行 */ 211 beq stack_setup 212 /* 以下直到nand_boot标号前都是NOR Flash启动的代码 */ 213 ldr r2, _armboot_start 214 ldr r3, _bss_start 215 sub r2, r3, r2 /* r2 <- size of armboot */ 216 add r2, r0, r2 /* r2 <- source end address */ 217 /* 搬运U-Boot自身到RAM中*/ 218 copy_loop: 219 ldmia r0!, {r3-r10} /* 从地址为[r0]的NOR Flash中读入8个字的数据 */ 220 stmia r1!, {r3-r10} /* 将r3至r10寄存器的数据复制给地址为[r1]的内存 */ 221 cmp r0, r2 /* until source end addreee [r2] */ 222 ble copy_loop 223 b stack_setup /* 跳过NAND Flash启动的代码 */ 下面再来分析NAND Flash启动部分代码: nand_boot: mov r1, #NAND_CTL_BASE ldr r2, =( (7<<12)|(7<<8)|(7<<4)|(0<<0) ) str r2, [r1, #oNFCONF] /* 设置NFCONF寄存器 */ /* 设置NFCONT,初始化ECC编/解码器,禁止NAND Flash片选 */ ldr r2, =( (1<<4)|(0<<1)|(1<<0) ) str r2, [r1, #oNFCONT] ldr r2, =(0x6) /* 设置NFSTAT */ str r2, [r1, #oNFSTAT] /* 复位命令,第一次使用NAND Flash前复位 */ mov r2, #0xff strb r2, [r1, #oNFCMD] mov r3, #0 /* 为调用C函数nand_read_ll准备堆栈 */ ldr sp, DW_STACK_START mov fp, #0 /* 下面先设置r0至r2,然后调用nand_read_ll函数将U-Boot读入RAM */ ldr r0, =TEXT_BASE /* 目的地址:U-Boot在RAM的开始地址 */ mov r1, #0x0 /* 源地址:U-Boot在NAND Flash中的开始地址 */ mov r2, #0x30000 /* 复制的大小,必须比u-boot.bin文件大,并且必须是NAND Flash块大小的整数倍,这里设置为0x30000(192KB) */ bl nand_read_ll /* 跳转到nand_read_ll函数,开始复制U-Boot到RAM */ tst r0, #0x0 /* 检查返回值是否正确 */ beq stack_setup bad_nand_read: loop2: b loop2 //infinite loop .align 2 DW_STACK_START: .word STACK_BASE+STACK_SIZE-4 其中NAND_CTL_BASE,oNFCONF等在include/configs/mini2440.h中定义如下: #define NAND_CTL_BASE 0x4E000000 // NAND Flash控制寄存器基址 #define STACK_BASE 0x33F00000 //base address of stack #define STACK_SIZE 0x8000 //size of stack #define oNFCONF 0x00 /* NFCONF相对于NAND_CTL_BASE偏移地址 */ #define oNFCONT 0x04 /* NFCONT相对于NAND_CTL_BASE偏移地址*/ #define oNFADDR 0x0c /* NFADDR相对于NAND_CTL_BASE偏移地址*/ #define oNFDATA 0x10 /* NFDATA相对于NAND_CTL_BASE偏移地址*/ #define oNFCMD 0x08 /* NFCMD相对于NAND_CTL_BASE偏移地址*/ #define oNFSTAT 0x20 /* NFSTAT相对于NAND_CTL_BASE偏移地址*/ #define oNFECC 0x2c /* NFECC相对于NAND_CTL_BASE偏移地址*/ NAND Flash各个控制寄存器的设置在S3C2440的数据手册有详细说明,这里就不介绍了。 代码中nand_read_ll函数的作用是在NAND Flash中搬运U-Boot到RAM,该函数在board/samsung/mini2440/nand_read.c中定义。 NAND Flash根据page大小可分为2种: 512B/page和2048B/page的。这两种NAND Flash的读操作是不同的。因此就需要U-Boot识别到NAND Flash的类型,然后采用相应的读操作,也就是说nand_read_ll函数要能自动适应两种NAND Flash。 参考S3C2440的数据手册可以知道:根据NFCONF寄存器的Bit3(AdvFlash (Read only))和Bit2 (PageSize (Read only))可以判断NAND Flash的类型。Bit2、Bit3与NAND Flash的block类型的关系如下表所示: 表 2.4 NFCONF的Bit3、Bit2与NAND Flash的关系 [align=center]
Bit2 Bit301
0256 B/page512 B/page
11024 B/page2048 B/page
[/align] 由于的NAND Flash只有512B/page和2048 B/page这两种,因此根据NFCONF寄存器的Bit3即可区分这两种NAND Flash了。 完整代码见board/samsung/mini2440/nand_read.c中的nand_read_ll函数,这里给出伪代码: int nand_read_ll(unsigned char *buf, unsigned long start_addr, int size) { //根据NFCONF寄存器的Bit3来区分2种NAND Flash if( NFCONF & 0x8 ) /* Bit是1,表示是2KB/page的NAND Flash */ { //////////////////////////////////// 读取2K block 的NAND Flash //////////////////////////////////// } else /* Bit是0,表示是512B/page的NAND Flash */ { ///////////////////////////////////// 读取512B block 的NAND Flash ///////////////////////////////////// } return 0; } (10)设置堆栈 /* 设置堆栈 */ stack_setup: ldr r0, _TEXT_BASE /* upper 128 KiB: relocated uboot */ sub r0, r0, #CONFIG_SYS_MALLOC_LEN /* malloc area */ sub r0, r0, #CONFIG_SYS_GBL_DATA_SIZE /* 跳过全局数据区 */ #ifdef CONFIG_USE_IRQ sub r0, r0, #(CONFIG_STACKSIZE_IRQ+CONFIG_STACKSIZE_FIQ) #endif sub sp, r0, #12 /* leave 3 words for abort-stack */ 只要将sp指针指向一段没有被使用的内存就完成栈的设置了。根据上面的代码可以知道U-Boot内存使用情况了,如下图所示:


图2.2 U-Boot内存使用情况 (11)清除BSS clear_bss: ldr r0, _bss_start /* BSS段开始地址,在u-boot.lds中指定*/ ldr r1, _bss_end /* BSS段结束地址,在u-boot.lds中指定*/ mov r2, #0x00000000 clbss_l:str r2, [r0] /* 将bss段清零*/ add r0, r0, #4 cmp r0, r1 ble clbss_l 初始值为0,无初始值的全局变量,静态变量将自动被放在BSS段。应该将这些变量的初始值赋为0,否则这些变量的初始值将是一个随机的值,若有些程序直接使用这些没有初始化的变量将引起未知的后果。 (12)跳转到第二阶段代码入口 ldr pc, _start_armboot _start_armboot: .word start_armboot 跳转到第二阶段代码入口start_armboot处。

1.1.2 U-Boot启动第二阶段代码分析

start_armboot函数在lib_arm/board.c中定义,是U-Boot第二阶段代码的入口。U-Boot启动第二阶段流程如下:

图 2.3 U-Boot第二阶段执行流程 在分析start_armboot函数前先来看看一些重要的数据结构: (1)gd_t结构体 U-Boot使用了一个结构体gd_t来存储全局数据区的数据,这个结构体在include/asm-arm/global_data.h中定义如下: typedef struct global_data { bd_t *bd; unsigned long flags; unsigned long baudrate; unsigned long have_console; /* serial_init() was called */ unsigned long env_addr; /* Address of Environment struct */ unsigned long env_valid; /* Checksum of Environment valid? */ unsigned long fb_base; /* base address of frame buffer */ void **jt; /* jump table */ } gd_t; U-Boot使用了一个存储在寄存器中的指针gd来记录全局数据区的地址: #define DECLARE_GLOBAL_DATA_PTR register volatile gd_t *gd asm ("r8") DECLARE_GLOBAL_DATA_PTR定义一个gd_t全局数据结构的指针,这个指针存放在指定的寄存器r8中。这个声明也避免编译器把r8分配给其它的变量。任何想要访问全局数据区的代码,只要代码开头加入“DECLARE_GLOBAL_DATA_PTR”一行代码,然后就可以使用gd指针来访问全局数据区了。 根据U-Boot内存使用图中可以计算gd的值: gd = TEXT_BASE -CONFIG_SYS_MALLOC_LEN - sizeof(gd_t) (2)bd_t结构体 bd_t在include/asm-arm.u/u-boot.h中定义如下: typedef struct bd_info { int bi_baudrate; /* 串口通讯波特率 */ unsigned long bi_ip_addr; /* IP 地址*/ struct environment_s *bi_env; /* 环境变量开始地址 */ ulong bi_arch_number; /* 开发板的机器码 */ ulong bi_boot_params; /* 内核参数的开始地址 */ struct /* RAM配置信息 */ { ulong start; ulong size; }bi_dram[CONFIG_NR_DRAM_BANKS]; } bd_t; U-Boot启动内核时要给内核传递参数,这时就要使用gd_t,bd_t结构体中的信息来设置标记列表。 (3)init_sequence数组 U-Boot使用一个数组init_sequence来存储对于大多数开发板都要执行的初始化函数的函数指针。init_sequence数组中有较多的编译选项,去掉编译选项后init_sequence数组如下所示: typedef int (init_fnc_t) (void); init_fnc_t *init_sequence[] = { board_init, /*开发板相关的配置--board/samsung/mini2440/mini2440.c */ timer_init, /* 时钟初始化-- cpu/arm920t/s3c24x0/timer.c */ env_init, /*初始化环境变量--common/env_flash.c 或common/env_nand.c*/ init_baudrate, /*初始化波特率-- lib_arm/board.c */ serial_init, /* 串口初始化-- drivers/serial/serial_s3c24x0.c */ console_init_f, /* 控制通讯台初始化阶段1-- common/console.c */ display_banner, /*打印U-Boot版本、编译的时间-- gedit lib_arm/board.c */ dram_init, /*配置可用的RAM-- board/samsung/mini2440/mini2440.c */ display_dram_config, /* 显示RAM大小-- lib_arm/board.c */ NULL, }; 其中的board_init函数在board/samsung/mini2440/mini2440.c中定义,该函数设置了MPLLCOM,UPLLCON,以及一些GPIO寄存器的值,还设置了U-Boot机器码和内核启动参数地址 : /* MINI2440开发板的机器码 */ gd->bd->bi_arch_number = MACH_TYPE_MINI2440; /* 内核启动参数地址 */ gd->bd->bi_boot_params = 0x30000100; 其中的dram_init函数在board/samsung/mini2440/mini2440.c中定义如下: int dram_init (void) { /* 由于mini2440只有 */ gd->bd->bi_dram[0].start = PHYS_SDRAM_1; gd->bd->bi_dram[0].size = PHYS_SDRAM_1_SIZE; return 0; } mini2440使用2片32MB的SDRAM组成了64MB的内存,接在存储控制器的BANK6,地址空间是0x30000000~0x34000000。 在include/configs/mini2440.h中PHYS_SDRAM_1和PHYS_SDRAM_1_SIZE 分别被定义为0x30000000和0x04000000(64M)。 分析完上述的数据结构,下面来分析start_armboot函数: void start_armboot (void) { init_fnc_t **init_fnc_ptr; char *s; … … /* 计算全局数据结构的地址gd */ gd = (gd_t*)(_armboot_start - CONFIG_SYS_MALLOC_LEN - sizeof(gd_t)); … … memset ((void*)gd, 0, sizeof (gd_t)); gd->bd = (bd_t*)((char*)gd - sizeof(bd_t)); memset (gd->bd, 0, sizeof (bd_t)); gd->flags |= GD_FLG_RELOC; monitor_flash_len = _bss_start - _armboot_start; /* 逐个调用init_sequence数组中的初始化函数 */ for (init_fnc_ptr = init_sequence; *init_fnc_ptr; ++init_fnc_ptr) { if ((*init_fnc_ptr)() != 0) { hang (); } } /* armboot_start 在cpu/arm920t/start.S 中被初始化为u-boot.lds连接脚本中的_start */ mem_malloc_init (_armboot_start - CONFIG_SYS_MALLOC_LEN, CONFIG_SYS_MALLOC_LEN); /* NOR Flash初始化 */ #ifndef CONFIG_SYS_NO_FLASH /* configure available FLASH banks */ display_flash_config (flash_init ()); #endif /* CONFIG_SYS_NO_FLASH */ … … /* NAND Flash 初始化*/ #if defined(CONFIG_CMD_NAND) puts ("NAND: "); nand_init(); /* go init the NAND */ #endif … … /*配置环境变量,重新定位 */ env_relocate (); … … /* 从环境变量中获取IP地址 */ gd->bd->bi_ip_addr = getenv_IPaddr ("ipaddr"); stdio_init (); /* get the devices list going. */ jumptable_init (); … … console_init_r (); /* fully init console as a device */ … … /* enable exceptions */ enable_interrupts (); #ifdef CONFIG_USB_DEVICE usb_init_slave(); #endif /* Initialize from environment */ if ((s = getenv ("loadaddr")) != NULL) { load_addr = simple_strtoul (s, NULL, 16); } #if defined(CONFIG_CMD_NET) if ((s = getenv ("bootfile")) != NULL) { copy_filename (BootFile, s, sizeof (BootFile)); } #endif … … /* 网卡初始化 */ #if defined(CONFIG_CMD_NET) #if defined(CONFIG_NET_MULTI) puts ("Net: "); #endif eth_initialize(gd->bd); … … #endif /* main_loop() can return to retry autoboot, if so just run it again. */ for (;;) { main_loop (); } /* NOTREACHED - no way out of command loop except booting */ } main_loop函数在common/main.c中定义。一般情况下,进入main_loop函数若干秒内没有


内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: