您的位置:首页 > 其它

IO端口和IO内存

2017-04-25 01:37 232 查看
从CPU连出来一把线:数据总线、地址总线、控制总线,这把线上挂着N个接口,有相同的,有不同的,名字叫做存储器接口、中断控制接口、DMA接口、并行接口、串行接口、AD接口……一个设备要想接入,就用自己的接口和总线上的某个匹配接口对接……于是总线上出现了各种设备:内存、硬盘,鼠标、键盘,显示器……

对于CPU而言,如果它要发数据到某个设备,其实是发到对应的接口,接口电路里有多个寄存器(也称为端口),访问设备实际上是访问相关的端口,所有的信息会由接口转给它的设备。那么CPU会准备数据到数据总线,但是诸多接口,该发给谁呢?这时就须要为各接口分配一个地址,然后把地址放在地址总线上,需要的控制信息放到控制总线上,就可以和设备通信了。

地址的概念
(1)物理地址:CPU地址总线传来的地址,由硬件电路控制其具体含义。物理地址中很大一部分是留给内存条中的内存的,但也常被映射到其他存储器上(如显存、BIOS等)。在程序指令中的虚拟地址经过段映射和页面映射后,就生成了物理地址,这个物理地址被放到CPU的地址线上。
(2)总线地址:总线的地址线或在地址周期上产生的信号。外设使用的是总线地址,CPU使用的是物理地址。 物理地址与总线地址之间的关系由系统的设计决定的。在x86平台上,物理地址就是总线地址,这是因为它们共享相同的地址空间。在其他平台上,可能需要转换/映射。比如:CPU需要访问物理地址是0xfa000的单元,那么在x86平台上,会产生一个PCI总线上对0xfa000地址的访问。因为物理地址和总线地址相同,所以凭眼睛看是不能确定这个地址是用在哪儿的,它或者在内存中,或者是某个卡上的存储单元,甚至可能这个地址上没有对应的存储器。 
(3)虚拟地址:现代操作系统普遍采用虚拟内存管理(Virtual Memory Management)机制,这需要MMU(Memory Management Unit)的支持。MMU通常是CPU的一部分,如果处理器没有MMU,或者有MMU但没有启用,CPU执行单元发出的内存地址将直接传到芯片引脚上,被内存芯片(物理内存)接收,这称为物理地址(Physical
Address),如果处理器启用了MMU,CPU执行单元发出的内存地址将被MMU截获,从CPU到MMU的地址称为虚拟地址(Virtual Address),而MMU将这个地址翻译成另一个地址发到CPU芯片的外部地址引脚上,也就是将虚拟地址映射成物理地址。

编址方式
(1)独立编址
I/O地址与存储地址分开独立编址,I/O端口地址不占用存储空间的地址范围,这样,在系统中就存在了另一种与存储地址无关的I/O地址,CPU也必须具有专用与输入输出操作的I/O指令(IN、OUT等)和控制逻辑。独立编址下,地址总线上过来一个地址,设备不知道是给I/O端口的、还是给存储器的,于是处理器通过MEMR/MEMW和IOR/IOW两组控制信号来实现对I/O端口和存储器的不同寻址。
在IBM PC体系结构中,I/O地址空间一共提供了65,536个8位的I/O端口。可以把两个连续的8位端口看成一个16位端口,但是这必须是从偶数地址开始。同理,也可以把两个连续的16位端口看成一个32位端口,但是这必须是从4的整数倍地址开始。有四条专用的汇编语言指令可以允许CPU对I/O端口进行读写:它们分别是in、ins、out和outs。在执行其中的一条指令时,CPU使用地址总线选择所请求的I/O端口,使用数据总线在CPU寄存器和端口之间传送数据。 

(2)统一编制
I/O端口还可以被映射到物理地址空间:因此,处理器和I/O设备之间的通信就可以直接使用对内存进行操作的汇编语言指令(例如,mov、and、or等等)。现代的硬件设备更倾向于映射I/O,因为这样处理的速度较快,并可以和DMA结合起来使用。也就解释了为什么32位系统名义上支持4G内存,实际上你装上4G内存条在机器上是不行了。因为访问不到4G,还需要为显卡,声卡等设备提供物理地址的映射。
 

Linux将基于I/O映射方式的或内存映射方式的I/O端口通称为“I/O区域”(I/O region)。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  IO端口 IO内存