您的位置:首页 > 其它

机器学习小组知识点38:谱聚类(Spectral-KMeans)

2017-04-10 23:02 253 查看
此文转自:https://www.cnblogs.com/sparkwen/p/3155850.html
对原作者表示感谢!尊重原作者版权!
谱聚类(Spectral Clustering, SC)是一种基于图论的聚类方法——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远,以达到常见的聚类的目的。其中的最优是指最优目标函数不同,可以是割边最小分割——如图1的Smallest cut(如后文的Min cut), 也可以是分割规模差不多且割边最小的分割——如图1的Best cut(如后文的Normalized
cut)。


图1
谱聚类无向图划分——Smallest cut和Best cut
这样,谱聚类能够识别任意形状的样本空间且收敛于全局最优解,其基本思想是利用样本数据的相似矩阵(拉普拉斯矩阵)进行特征分解后得到的特征向量进行聚类。


1 理论基础

对于如下空间向量item-user matrix:





如果要将item做聚类,常常想到k-means聚类方法,复杂度为o(tknm),t为迭代次数,k为类的个数、n为item个数、m为空间向量特征数:

1 如果M足够大呢?
2 K的选取?
3 类的假设是凸球形的?
4 如果item是不同的实体呢?
5 Kmeans无可避免的局部最优收敛?
……

这些都使常见的聚类问题变得相当复杂。


1.1 图的表示

如果我们计算出item与item之间的相似度,便可以得到一个只有item的相似矩阵,进一步,将item看成了Graph(G)中Vertex(V),歌曲之间的相似度看成G中的Edge(E),这样便得到我们常见的图的概念。

对于图的表示(如图2),常用的有:

邻接矩阵:E,eij表示vi和vi的边的权值,E为对称矩阵,对角线上元素为0,如图2-2。

Laplacian矩阵:L = D – E, 其中di (行或列元素的和),如图2-3。



图2
图的表示


1.2 特征值与L矩阵

先考虑一种最优化图像分割方法,以二分为例,将图cut为S和T两部分,等价于如下损失函数cut(S, T),如公式1所示,即最小(砍掉的边的加权和)。





假设二分成两类,S和T,用q(如公式2所示)表示分类情况,且q满足公式3的关系,用于类标识。

那么:





其中D为对角矩阵,行或列元素的和,L为拉普拉斯矩阵。

值得注意的是上述推导少了一个2倍的关系。

由:







有:

1、 L为对称半正定矩阵,保证所有特征值都大于等于0;
2、 L矩阵有唯一的0特征值,其对应的特征向量为1。

离散求解q很困难,如果将问题松弛化为连续实数值,由瑞利熵的性质知其二将你型的最小值就是L的特征值们(最小值,第二小值,......,最大值分别对应矩阵L的最小特征值,第二小特征值,......,最大特征值,且极值q相应的特征向量处取得,请参见瑞利熵(Rayleigh quotient))。

写到此,不得不对数学家们致敬,将cut(S,T),巧妙地转换成拉普拉斯矩阵特征值(向量)的问题,将离散的聚类问题,松弛为连续的特征向量,最小的系列特征向量对应着图最优的系列划分方法。剩下的仅是将松弛化的问题再离散化,即将特征向量再划分开,便可以得到相应的类别,如将图3中的最小特征向量,按正负划分,便得类{A,B,C}和类{D,E,F,G}。在K分类时,常将前K个特征向量,采用kmeans分类。

PS:

1、此处虽再次提到kmeans,但意义已经远非引入概念时的讨论的kmeans了,此处的kmeans,更多的是与ensemble learning相关,在此不述;

2、k与聚类个数并非要求相同,可从第4节的相关物理意义中意会;

3、在前k个特征向量中,第一列值完全相同(迭代算法计算特征向量时,值极其相近),kmeans时可以删除,同时也可以通过这一列来简易判断求解特征值(向量)方法是否正确,常常问题在于邻接矩阵不对称。





图3 图的L矩阵的特征值与特征向量


2 最优化方法

在kmeans等其它聚类方法中,很难刻划类的大小关系,局部最优解也是无法回避的漏病。当然这与kmeans的广泛使用相斥——原理简单。


2.1 Min cut方法

如2.2节的计算方法,最优目标函数如下的图cut方法:





计算方法,可直接由计算L的最小特征值(特征向量),求解。


2.2 Nomarlized cut方法

Normarlized cut,目标是同时考虑最小化cut边和划分平衡,以免像图1中的cut出一个单独的H。衡量子图大小的标准是:子图各个端点的Degree之和。





2.3 Ratio Cut 方法

Ratio cut的目标是同时考虑最小化cut边和划分平衡,以免像图1中的cut出一个单独的H。

最优目标函数为:





2.4 Normalized相似变换

归一化的L矩阵有:





因而L’的最小特征值与D-(1/2)E D-(1/2)的最大特征值对应。

而计算的L’相比计算L要稍具优势,在具体实用中,常以L’替代L,但是min cut和ratio cut不可以。

PS:这也是常常在人们的博客中,A说谱聚类为求最大K特征值(向量),B说谱聚类为求最小K个特征值(向量的原因)。


3 谱聚类步骤

第一步:数据准备,生成图的邻接矩阵;
第二步:归一化普拉斯矩阵;
第三步:生成最小的k个特征值和对应的特征向量;
第四步:将特征向量kmeans聚类(少量的特征向量);


4 谱聚类的物理意义

谱聚类中的矩阵:





可见不管是L、L’都与E联系特别大。如果将E看成一个高维向量空间,也能在一定程度上反映item之间的关系。将E直接kmeans聚类,得到的结果也能反映V的聚类特性,而谱聚类的引入L和L’是使得G的分割具有物理意义。

而且,如果E的item(即n)足够大,将难计算出它的kmeans,我们完全可以用PCA降维(仍为top的特征值与向量)。

上述对将E当成向量空间矩阵,直观地看符合我们的认知,但缺乏理论基础;而L(L’等)的引入,如第2节所述,使得计算具有理论基础,其前k个特征向量,也等价于对L(L’等)的降维。

因而聚类就是为图的划分找了理论基础,能达到降维的目的。

其中不少图出源于Mining of Massive Datasets,对于同仁们的布道授业,一并感谢。

1 Spectral Coclustering

1.1 协同聚类(Coclustering)
在数据分析中,聚类是最常见的一种方法,对于一般的聚类算法(kmeans, spectral clustering, gmm等等),聚类结果都类似图1所示,能挖掘出数据之间的类簇规律。


图1
聚类结果图
即使对于常见的数据User-Item评分矩阵(常见于各社交平台的数据之中,例如音乐网站的用户-歌曲评分矩阵,新闻网站的用户-新闻评分矩阵,电影网站的用户-电影评分矩阵等等),如表1所示。在聚类分析中,也常常将数据计算成User-User的相似度关系或Item-Item的相似度关系,计算方法诸如应用Jaccard距离,将User或Item分别当成Item或User的特征,再在此基础上计算欧氏距离、cos距离等等。



表1 User-Item评分矩阵
但是如果能聚类成如图2中的coclustering关系,将User和Item同时聚类,将使得数据结果更具意义,即在音乐网站中的用户和歌曲coclustering结果表明,某些用户大都喜欢某类歌曲,同时这类歌曲也大都只被这群用户喜欢着。这样,不管是用于何种场景(例如歌曲推荐),都将带来极大的益处。


图2
coclustering图
1.2 Spectral Coclustering
对于User-Item评分矩阵,这是一个典型的二部图(Bipartite Grap),Item-User矩阵A,假设A为N*M,即N个item和M个user,可展开成:


其中E为(M+N)*(M+N)的方阵,且对称。
对于A的二部图,只存在Item与User之间的邻接边,在Item(User)之间不存在邻接边。再用谱聚类原理——将带权无向图划分为两个或两个以上的最优子图,使子图内部尽量相似,而子图间距离尽量距离较远。这样的聚类结果将Cut尽量少的边,分割出User和Item的类,如果类记Ci(U,I)为第i个由特定的User和Item组成的类,由谱聚类原理,Cut掉的Ci边为中的User或Item与其它类Cj(j≠i)的边,且其满足某种最优Cut方法,简单地说,Cut掉的User到其它类Cj(j≠i)的Item的边,可理解为这些User与其它Item相似关系较小;同样Cut掉的Item到其它类Cj(j≠i)的User的边,可理解为这些Item与其它User相似关系较小。这正好满足coclusering的定义。

在谱聚类的基础上,再实现Spectral Coclustering,十分简单, 将E直接当成谱聚类的邻接矩阵即可,至于求Laplacian矩阵、求特征值、计算Kmeans,完成与谱聚类相同。
PS:更多详情,请参见参考文献1。


2 谱聚类的半监督学习

假设有大量新闻需要聚类,但对于其中的部分新闻,编辑已经人工分类好了,例如(Ni1,Ni2, …, Nim),为分类好的第i类,那么对于人工分类好的数据,就相当于聚类中的先验知识(或正则)。
在聚类时,可相应在邻接矩阵E中增加类彼此间邻接边,并使得其邻接权重较大,这样生成的邻接矩阵为E’。这样,再对此邻接矩阵E’做谱聚类,聚类结果将在一定程度上维持人工分类的结果,并达到聚类的目的。
PS:更多详情,请参见参考文献2,不过谱聚类的半监督学习,都有点扯。

参考文献:
1 Inderjit S. Dhillon. Co-clustering documents and words using Bipartite Spectral Graph Partitioning;
2 W Chen. Spectral clustering: A semi-supervised approach;
3 Wen-Yen Chen, Yangqiu Song, Hongjie Bai, Chih-Jen Lin, Edward Y. Chang. Parallel Spectral Clustering in Distributed Systems.
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: