您的位置:首页 > 运维架构 > Linux

分析Linux内核创建一个新进程的过程

2017-04-01 23:26 471 查看
刘文 + 原创作品转载请注明出处 +《Linux内核分析》MOOC课程http://mooc.study.163.com/course/USTC-1000029000

这一周的课程我们主要分析了Linux内核中关于进程的部分,重点是研究Linux内核创建一个新进程的过程及其源代码。我们先看一下使用fork函数创建一个进程的简单代码:

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
int main(int argc, char * argv[])
{
int pid;
/* fork another process */
pid = fork();
if (pid < 0)
{
/* error occurred */
fprintf(stderr,"Fork Failed!");
exit(-1);
}
else if (pid == 0)
{
/* child process */
printf("This is Child Process!\n");
}
else
{
/* parent process  */
printf("This is Parent Process!\n");
/* parent will wait for the child to complete*/
wait(NULL);
printf("Child Complete!\n");
}
}


fork()实际上封装了sys_clone()内核函数,而sys_clone又调用了内核程序do_fork(),为了研究Linux内核创建新进程的过程,我们看一下do_fork的代码:

long do_fork(unsigned long clone_flags,
unsigned long stack_start,
unsigned long stack_size,
int __user *parent_tidptr,
int __user *child_tidptr)
{
struct task_struct *p; //进程描述符结构体指针
int trace = 0;
long nr; //总的pid数量

/*
* Determine whether and which event to report to ptracer.  When
* called from kernel_thread or CLONE_UNTRACED is explicitly
* requested, no event is reported; otherwise, report if the event
* for the type of forking is enabled.
*/
if (!(clone_flags & CLONE_UNTRACED)) {
if (clone_flags & CLONE_VFORK)
trace = PTRACE_EVENT_VFORK;
else if ((clone_flags & CSIGNAL) != SIGCHLD)
trace = PTRACE_EVENT_CLONE;
else
trace = PTRACE_EVENT_FORK;

if (likely(!ptrace_event_enabled(current, trace)))
trace = 0;
}

// 复制进程描述符,返回创建的task_struct的指针
p = copy_process(clone_flags, stack_start, stack_size,
child_tidptr, NULL, trace);
/*
* Do this prior waking up the new thread - the thread pointer
* might get invalid after that point, if the thread exits quickly.
*/
if (!IS_ERR(p)) {
struct completion vfork;
struct pid *pid;

trace_sched_process_fork(current, p);

// 取出task结构体内的pid
pid = get_task_pid(p, PIDTYPE_PID);
nr = pid_vnr(pid);

if (clone_flags & CLONE_PARENT_SETTID)
put_user(nr, parent_tidptr);

// 如果使用的是vfork,那么必须采用某种完成机制,确保父进程后运行
if (clone_flags & CLONE_VFORK) {
p->vfork_done = &vfork;
init_completion(&vfork);
get_task_struct(p);
}

// 将子进程添加到调度器的队列,使得子进程有机会获得CPU
wake_up_new_task(p);

/* forking complete and child started to run, tell ptracer */
if (unlikely(trace))
ptrace_event_pid(trace, pid);

// 如果设置了 CLONE_VFORK 则将父进程插入等待队列,并挂起父进程直到子进程释放自己的内存空间
// 保证子进程优先于父进程运行
if (clone_flags & CLONE_VFORK) {
if (!wait_for_vfork_done(p, &vfork))
ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
}

put_pid(pid);
} else {
nr = PTR_ERR(p);
}
return nr;
}


我们再分
4000
析一下do_fork中比较重要的部分,这个函数中主要调用了两个函数:

1、通过copy_process来复制进程描述符,返回新创建的子进程的task_struct的指针(即PCB指针);

2、通过调用wake_up_new_task将新的进程放入运行队列并唤醒该进程。

那么我们先看一下copy_process的精简代码:

/*
创建进程描述符以及子进程所需要的其他所有数据结构
为子进程准备运行环境
*/
static struct task_struct *copy_process(unsigned long clone_flags,
unsigned long stack_start,
unsigned long stack_size,
int __user *child_tidptr,
struct pid *pid,
int trace)
{
...
int retval;
struct task_struct *p;

...
// 分配一个新的task_struct,此时的p与当前进程的task,仅仅是stack地址不同
p = dup_task_struct(current);
if (!p)
goto fork_out;

···

retval = -EAGAIN;
// 检查该用户的进程数是否超过限制
if (atomic_read(&p->real_cred->user->processes) >=
task_rlimit(p, RLIMIT_NPROC)) {
// 检查该用户是否具有相关权限,不一定是root
if (p->real_cred->user != INIT_USER &&
!capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
goto bad_fork_free;
}
current->flags &= ~PF_NPROC_EXCEEDED;

retval = copy_creds(p, clone_flags);
if (retval < 0)
goto bad_fork_free;

/*
* If multiple threads are within copy_process(), then this check
* triggers too late. This doesn't hurt, the check is only there
* to stop root fork bombs.
*/
retval = -EAGAIN;
// 检查进程数量是否超过 max_threads,后者取决于内存的大小
if (nr_threads >= max_threads)
goto bad_fork_cleanup_count;

if (!try_module_get(task_thread_info(p)->exec_domain->module))
goto bad_fork_cleanup_count;

delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
// 表明子进程还没有调用exec系统调用
p->flags |= PF_FORKNOEXEC;
INIT_LIST_HEAD(&p->children);
INIT_LIST_HEAD(&p->sibling);
rcu_copy_process(p);
p->vfork_done = NULL;

// 初始化自旋锁
spin_lock_init(&p->alloc_lock);

// 初始化挂起信号
init_sigpending(&p->pending);

// 初始化定时器
p->utime = p->stime = p->gtime = 0;
p->utimescaled = p->stimescaled = 0;
#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
p->prev_cputime.utime = p->prev_cputime.stime = 0;
#endif
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
seqlock_init(&p->vtime_seqlock);
p->vtime_snap = 0;
p->vtime_snap_whence = VTIME_SLEEPING;
#endif

...

#ifdef CONFIG_DEBUG_MUTEXES
p->blocked_on = NULL; /* not blocked yet */
#endif
#ifdef CONFIG_BCACHE
p->sequential_io    = 0;
p->sequential_io_avg    = 0;
#endif

/* Perform scheduler related setup. Assign this task to a CPU. */

// 完成对新进程调度程序数据结构的初始化,并把新进程的状态设置为TASK_RUNNING
// 同时将thread_info中得preempt_count置为1,禁止内核抢占
retval = sched_fork(clone_flags, p);
if (retval)
goto bad_fork_cleanup_policy;

retval = perf_event_init_task(p);
if (retval)
goto bad_fork_cleanup_policy;
retval = audit_alloc(p);
if (retval)
goto bad_fork_cleanup_perf;
/* copy all the process information */

// 复制所有的进程信息
shm_init_task(p);
retval = copy_semundo(clone_flags, p);
if (retval)
goto bad_fork_cleanup_audit;
retval = copy_files(clone_flags, p);
if (retval)
goto bad_fork_cleanup_semundo;

...

// 初始化子进程的内核栈
retval = copy_thread(clone_flags, stack_start, stack_size, p);
if (retval)
goto bad_fork_cleanup_io;

if (pid != &init_struct_pid) {
retval = -ENOMEM;
// 这里为子进程分配了新的pid号
pid = alloc_pid(p->nsproxy->pid_ns_for_children);
if (!pid)
goto bad_fork_cleanup_io;
}

...

// 清除子进程thread_info结构的 TIF_SYSCALL_TRACE,防止 ret_from_fork将系统调用消息通知给调试进程
clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
#ifdef TIF_SYSCALL_EMU
clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
#endif
clear_all_latency_tracing(p);

/* ok, now we should be set up.. */

// 设置子进程的pid
p->pid = pid_nr(pid);

// 如果是创建线程
if (clone_flags & CLONE_THREAD) {
p->exit_signal = -1;

// 线程组的leader设置为当前线程的leader
p->group_leader = current->group_leader;

// tgid是当前线程组的id,也就是main进程的pid
p->tgid = current->tgid;
} else {
if (clone_flags & CLONE_PARENT)
p->exit_signal = current->group_leader->exit_signal;
else
p->exit_signal = (clone_flags & CSIGNAL);

// 创建的是进程,自己是一个单独的线程组
p->group_leader = p;

// tgid和pid相同
p->tgid = p->pid;
}

...

if (likely(p->pid)) {
ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);

init_task_pid(p, PIDTYPE_PID, pid);
if (thread_group_leader(p)) {

...

// 将pid加入散列表
attach_pid(p, PIDTYPE_PGID);
attach_pid(p, PIDTYPE_SID);
__this_cpu_inc(process_counts);
} else {

...

}
// 将pid加入PIDTYPE_PID这个散列表
attach_pid(p, PIDTYPE_PID);
// 递增 nr_threads的值
nr_threads++;
}

total_forks++;
spin_unlock(¤t->sighand->siglock);
syscall_tracepoint_update(p);
write_unlock_irq(&tasklist_lock);

...

// 返回被创建的task结构体指针
return p;

...

}


这个函数中比较重要的语句:

p = dup_task_struct(current) 为新进程分配一个新的内核堆栈,复制了thread_info;

copy_*  这一系列的拷贝函数为pcb复制了一些指针数据,tsk->files,tsk->fs,等等;copy_thread
() 该函数拷贝和体系结构相关的进程执行状态,寄存器,指令指针ip等等。

下面我们对其一一分析,首先是dup_task_struct这个函数,会分配一个新的task_struct给子进程,但是这个task_struct是未初始化的,下面我们看看这个dup_task_struct:

static struct task_struct *dup_task_struct(struct task_struct *orig)
{
struct task_struct *tsk;
struct thread_info *ti;
int node = tsk_fork_get_node(orig);
int err;

// 分配一个task_struct结点
tsk = alloc_task_struct_node(node);
if (!tsk)
return NULL;

// 分配一个thread_info结点,其实内部分配了一个union,包含进程的内核栈
// 此时ti的值为栈底,在x86下为union的高地址处。
ti = alloc_thread_info_node(tsk, node);
if (!ti)
goto free_tsk;

err = arch_dup_task_struct(tsk, orig);
if (err)
goto free_ti;

// 将栈底的值赋给新结点的stack
tsk->stack = ti;

...

/*
* One for us, one for whoever does the "release_task()" (usually
* parent)
*/
// 将进程描述符的使用计数器置为2
atomic_set(&tsk->usage, 2);
#ifdef CONFIG_BLK_DEV_IO_TRACE
tsk->btrace_seq = 0;
#endif
tsk->splice_pipe = NULL;
tsk->task_frag.page = NULL;

account_kernel_stack(ti, 1);

// 返回新申请的结点
return tsk;

free_ti:
free_thread_info(ti);
free_tsk:
free_task_struct(tsk);
return NULL;
}


下面我们看一下copy_thread()函数,这里的过程基本就是给新的进程的各种运行时状态进行初始化,比如寄存器信息(通过父进程的寄存器信息来初始化,但是eip会是个例外,eip将会取决于最后子进程将会从哪里开始执行),栈会被置空未初始化状态:

// 初始化子进程的内核栈
int copy_thread(unsigned long clone_flags, unsigned long sp,
unsigned long arg, struct task_struct *p)
{

// 取出子进程的寄存器信息
struct pt_regs *childregs = task_pt_regs(p);
struct task_struct *tsk;
int err;

// 栈顶 空栈
p->thread.sp = (unsigned long) childregs;
p->thread.sp0 = (unsigned long) (childregs+1);
memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));

// 如果是创建的内核线程
if (unlikely(p->flags & PF_KTHREAD)) {
/* kernel thread */
memset(childregs, 0, sizeof(struct pt_regs));
// 内核线程开始执行的位置
p->thread.ip = (unsigned long) ret_from_kernel_thread;
task_user_gs(p) = __KERNEL_STACK_CANARY;
childregs->ds = __USER_DS;
childregs->es = __USER_DS;
childregs->fs = __KERNEL_PERCPU;
childregs->bx = sp; /* function */
childregs->bp = arg;
childregs->orig_ax = -1;
childregs->cs = __KERNEL_CS | get_kernel_rpl();
childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
p->thread.io_bitmap_ptr = NULL;
return 0;
}

// 将当前进程的寄存器信息复制给子进程
*childregs = *current_pt_regs();
// 子进程的eax置为0,所以fork的子进程返回值为0
childregs->ax = 0;
if (sp)
childregs->sp = sp;

// 子进程从ret_from_fork开始执行
p->thread.ip = (unsigned long) ret_from_fork;
task_user_gs(p) = get_user_gs(current_pt_regs());

p->thread.io_bitmap_ptr = NULL;
tsk = current;
err = -ENOMEM;

// 如果父进程使用IO权限位图,那么子进程获得该位图的一个拷贝
if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
IO_BITMAP_BYTES, GFP_KERNEL);
if (!p->thread.io_bitmap_ptr) {
p->thread.io_bitmap_max = 0;
return -ENOMEM;
}
set_tsk_thread_flag(p, TIF_IO_BITMAP);
}

...

return err;
}


在copy_thread函数中,子进程的内核堆栈被初始化,进程的sp,ip信息也是在这时被写入,我们在第一次实验my_kernel中得知,0号进程的ip被我们设置成即将执行的函数的入口地址,而在这里,ip被我们设置为汇编函数ret_from_fork,这是子进程的执行的起点;也是在这个函数中,寄存器eax被改写为0,这就是fork出的子进程id=0的原因。

最后总结一下Linux创建一个新进程的过程,函数调用和执行的顺序如下:

libc fork() -> system_call -> sys_clone() -> do_fork() -> copy_process() {dup_task_struct; copy_thread } -> wake_up_new_task() -> ret_from_fork
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: