您的位置:首页 > 其它

[Leetcode] 87. Scramble String 解题报告

2017-03-31 16:45 801 查看
题目

Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.

Below is one possible representation of s1 = 
"great"
:
great
/    \
gr    eat
/ \    /  \
g   r  e   at
/ \
a   t


To scramble the string, we may choose any non-leaf node and swap its two children.

For example, if we choose the node 
"gr"
 and swap its two children, it produces a scrambled
string 
"rgeat"
.
rgeat
/    \
rg    eat
/ \    /  \
r   g  e   at
/ \
a   t


We say that 
"rgeat"
 is a scrambled string of 
"great"
.

Similarly, if we continue to swap the
4000
children of nodes 
"eat"
 and 
"at"
,
it produces a scrambled string 
"rgtae"
.
rgtae
/    \
rg    tae
/ \    /  \
r   g  ta  e
/ \
t   a


We say that 
"rgtae"
 is a scrambled string of 
"great"
.

Given two strings s1 and s2 of the same length, determine if s2 is a scrambled string of s1.
思路

1、递归法:如果s1是s2的scramble string,那么要么s1和s2相等,要么在从s1变换到s2的过程中的最后一步,必然是从s1的中间某个部分切开,形成s11和s12,并且s11和s12都分别可以scramble到s2的前(后)部分或者后(前)部分。所以我们可以递归地求解这一问题。为了加快速度,可以进行适当剪枝:1)两者长度不等;2)两者所含有的可重复字母集合不同。二递归基则是字符串长度为1的情况。

2、动态规划法:定义dp[i][j][k]表示s1.substr(i, k)和s2.substr(j, k)是否是scramble string,则递推方程很容易写出来(具体递推方程可见代码实现)。该动态规划方法的时间复杂度是O(n^4),空间复杂度是O(n^3)。感觉也不是很好,不过所有测试用例倒是都可以通过。

代码

1、递归法:

class Solution {
public:
bool isScramble(string s1, string s2) {
if (s1.length() != s2.length()) {
return false;
}
if (s1 == s2) {
return true;
}
if (s1.length() == 1) {
return false;
}
unordered_map<char, int> hash;
int len1 = s1.length(), len2 = s2.length();
for (int i = 0; i < len1; ++i) {
hash[s1[i]]++;
}
for (int i = 0; i < len2; ++i) {
hash[s2[i]]--;
}
for (auto it = hash.begin(); it != hash.end(); ++it) {
if (it->second != 0) {
return false;
}
}
for (int i = 1; i < len1; ++i) {
bool ret = isScramble(s1.substr(0, i), s2.substr(0, i)) &&
isScramble(s1.substr(i, len1 - i), s2.substr(i, len2 - i));
ret = ret || isScramble(s1.substr(0, i), s2.substr(len2 - i, i)) &&
isScramble(s1.substr(i, len1 - i), s2.substr(0, len2 - i));
if (ret) {
return true;
}
}
return false;
}
};


2、动态规划法:

class Solution {
public:
bool isScramble(string s1, string s2) {
if (s1.length() != s2.length()) {
return false;
}
int length = s1.length();
// dp[i][j][k] means whether s1.substr(i, k) is scramble of s2.substr(j, k)
vector<vector<vector<bool>>> dp(length, vector<vector<bool>>(length, vector<bool>(length + 1, false)));
for (int k = 1; k <= length; ++k) {
for (int i = 0; i + k - 1 < length; ++i) {
for (int j= 0; j + k - 1 < length; ++j) {
if (k == 1) {
dp[i][j][k] = (s1[i] == s2[j]);
continue;
}
else {
for (int p = 1; p < k; ++p) {
int length1 = p, length2 = k - p;
if (dp[i][j][length1] && dp[i + length1][j + length1][length2]) {
dp[i][j][k] = true;
break;
}
if (dp[i][j + length2][length1] && dp[i + length1][j][length2]) {
dp[i][j][k] = true;
break;
}
}
}
}
}
}
return dp[0][0][length];
}
};
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: