您的位置:首页 > 编程语言 > Java开发

Java并发(五):Condition-线程通信更高效的方式、CAS

2017-03-28 16:58 459 查看

Condition-线程通信更高效的方式

上一篇讲述了并发包下的Lock,Lock可以更好的解决线程同步问题,使之更面向对象,并且ReadWriteLock在处理同步时更强大,那么同样,线程间仅仅互斥是不够的,还需要通信,本篇的内容是基于上篇之上,使用Lock如何处理线程通信。

那么引入本篇的主角,Condition,Condition 将 Object 监视器方法(wait、notify 和 notifyAll)分解成截然不同的对象,以便通过将这些对象与任意 Lock 实现组合使用,为每个对象提供多个等待 set (wait-set)。其中,Lock 替代了 synchronized 方法和语句的使用,Condition 替代了 Object 监视器方法的使用。下面将之前写过的一个线程通信的例子替换成用Condition实现,代码如下:

public class ThreadTest2 {
public static void main(String[] args) {
final Business business = new Business();
new Thread(new Runnable() {
@Override
public void run() {
threadExecute(business, "sub");
}
}).start();
threadExecute(business, "main");
}
public static void threadExecute(Business business, String threadType) {
for(int i = 0; i < 100; i++) {
try {
if("main".equals(threadType)) {
business.main(i);
} else {
business.sub(i);
}
} catch (InterruptedException e) {
e.printStackTrace();
}
}
}
}
class Business {
private boolean bool = true;
private Lock lock = new ReentrantLock();
private Condition condition = lock.newCondition();
public /*synchronized*/ void main(int loop) throws InterruptedException {
lock.lock();
try {
while(bool) {
condition.await();//this.wait();
}
for(int i = 0; i < 100; i++) {
System.out.println("main thread seq of " + i + ", loop of " + loop);
}
bool = true;
condition.signal();//this.notify();
} finally {
lock.unlock();
}
}
public /*synchronized*/ void sub(int loop) throws InterruptedException {
lock.lock();
try {
while(!bool) {
condition.await();//this.wait();
}
for(int i = 0; i < 10; i++) {
System.out.println("sub thread seq of " + i + ", loop of " + loop);
}
bool = false;
condition.signal();//this.notify();
} finally {
lock.unlock();
}
}
}


在Condition中,用await()替换wait(),用signal()替换notify(),用signalAll()替换notifyAll(),传统线程的通信方式,Condition都可以实现,这里注意,Condition是被绑定到Lock上的,要创建一个Lock的Condition必须用newCondition()方法。

这样看来,Condition和传统的线程通信没什么区别,Condition的强大之处在于它可以为多个线程间建立不同的Condition,下面引入API中的一段代码,加以说明。

class BoundedBuffer {
final Lock lock = new ReentrantLock();//锁对象
final Condition notFull  = lock.newCondition();//写线程条件
final Condition notEmpty = lock.newCondition();//读线程条件

final Object[] items = new Object[100];//缓存队列
int putptr/*写索引*/, takeptr/*读索引*/, count/*队列中存在的数据个数*/;

public void put(Object x) throws InterruptedException {
lock.lock();
try {
while (count == items.length)//如果队列满了
notFull.await();//阻塞写线程
items[putptr] = x;//赋值
if (++putptr == items.length) putptr = 0;//如果写索引写到队列的最后一个位置了,那么置为0
++count;//个数++
notEmpty.signal();//唤醒读线程
} finally {
lock.unlock();
}
}

public Object take() throws InterruptedException {
lock.lock();
try {
while (count == 0)//如果队列为空
notEmpty.await();//阻塞读线程
Object x = items[takeptr];//取值
if (++takeptr == items.length) takeptr = 0;//如果读索引读到队列的最后一个位置了,那么置为0
--count;//个数--
notFull.signal();//唤醒写线程
return x;
} finally {
lock.unlock();
}
}
}


这是一个处于多线程工作环境下的缓存区,缓存区提供了两个方法,put和take,put是存数据,take是取数据,内部有个缓存队列,具体变量和方法说明见代码,这个缓存区类实现的功能:有多个线程往里面存数据和从里面取数据,其缓存队列(先进先出后进后出)能缓存的最大数值是100,多个线程间是互斥的,当缓存队列中存储的值达到100时,将写线程阻塞,并唤醒读线程,当缓存队列中存储的值为0时,将读线程阻塞,并唤醒写线程,这也是ArrayBlockingQueue的内部实现。下面分析一下代码的执行过程:

1. 一个写线程执行,调用put方法;

2. 判断count是否为100,显然没有100;

3. 继续执行,存入值;

4. 判断当前写入的索引位置++后,是否和100相等,相等将写入索引值变为0,并将count+1;

5. 仅唤醒读线程阻塞队列中的一个;

6. 一个读线程执行,调用take方法;

7. ……

8. 仅唤醒写线程阻塞队列中的一个。


这就是多个Condition的强大之处,假设缓存队列中已经存满,那么阻塞的肯定是写线程,唤醒的肯定是读线程,相反,阻塞的肯定是读线程,唤醒的肯定是写线程,那么假设只有一个Condition会有什么效果呢,缓存队列中已经存满,这个Lock不知道唤醒的是读线程还是写线程了,如果唤醒的是读线程,皆大欢喜,如果唤醒的是写线程,那么线程刚被唤醒,又被阻塞了,这时又去唤醒,这样就浪费了很多时间。

CAS

在Java并发包中有这样一个包,java.util.concurrent.atomic,该包是对Java部分数据类型的原子封装,在原有数据类型的基础上,提供了原子性的操作方法,保证了线程安全。下面以AtomicInteger为例,来看一下是如何实现的。

public final int incrementAndGet() {
for (;;) {
int current = get();
int next = current + 1;
if (compareAndSet(current, next))
return next;
}
}


public final int decrementAndGet() {
for (;;) {
int current = get();
int next = current - 1;
if (compareAndSet(current, next))
return next;
}
}


以这两个方法为例,incrementAndGet方法相当于原子性的++i,decrementAndGet方法相当于原子性的–i,(我们知道++i或–i不是一个原子性的操作),这两个方法中都没有使用阻塞式的方式来保证原子性(如Synchronized),那它们是如何保证原子性的呢,下面引出CAS。

CAS(Compare And Swap) 指的是现代 CPU 广泛支持的一种对内存中的共享数据进行操作的一种特殊指令。这个指令会对内存中的共享数据做原子的读写操作。简单介绍一下这个指令的操作过程:首先,CPU 会将内存中将要被更改的数据与期望的值做比较。然后,当这两个值相等时,CPU 才会将内存中的数值替换为新的值。否则便不做操作。最后,CPU 会将旧的数值返回。这一系列的操作是原子的。它们虽然看似复杂,但却是 Java 5 并发机制优于原有锁机制的根本。简单来说,CAS 的含义是“我认为原有的值应该是什么,如果是,则将原有的值更新为新值,否则不做修改,并告诉我原来的值是多少”。(这段描述引自《Java并发编程实践》)

简单的来说,CAS有3个操作数,内存值V,旧的预期值A,要修改的新值B。当且仅当预期值A和内存值V相同时,将内存值V修改为B,否则返回V。这是一种乐观锁的思路,它相信在它修改之前,没有其它线程去修改它;而Synchronized是一种悲观锁,它认为在它修改之前,一定会有其它线程去修改它,悲观锁效率很低。下面来看一下AtomicInteger是如何利用CAS实现原子性操作的。

volatile变量:

private volatile int value;


首先声明了一个volatile变量value,我们知道volatile保证了变量的内存可见性,也就是所有工作线程中同一时刻都可以得到一致的值。

public final int get() {
return value;
}


Compare And Set:

// setup to use Unsafe.compareAndSwapInt for updates
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long valueOffset;// 注意是静态的

static {
try {
valueOffset = unsafe.objectFieldOffset
(AtomicInteger.class.getDeclaredField("value"));// 反射出value属性,获取其在内存中的位置
} catch (Exception ex) { throw new Error(ex); }
}

public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}


比较并设置,这里利用Unsafe类的JNI方法实现,使用CAS指令,可以保证读-改-写是一个原子操作。compareAndSwapInt有4个参数,this - 当前AtomicInteger对象,Offset - value属性在内存中的位置(需要强调的是不是value值在内存中的位置),expect - 预期值,update - 新值,根据上面的CAS操作过程,当内存中的value值等于expect值时,则将内存中的value值更新为update值,并返回true,否则返回false。在这里我们有必要对Unsafe有一个简单点的认识,从名字上来看,不安全,确实,这个类是用于执行低级别的、不安全操作的方法集合,这个类中的方法大部分是对内存的直接操作,所以不安全,但当我们使用反射、并发包时,都间接的用到了Unsafe。

循环设置:

现在在来看开篇提到的两个方法,我们拿incrementAndGet来分析一下其实现过程。

public final int incrementAndGet() {
for (;;) {// 这样优于while(true)
int current = get();// 获取当前值
int next = current + 1;// 设置更新值
if (compareAndSet(current, next))
return next;
}
}


循环内,获取当前值并设置更新值,调用compareAndSet进行CAS操作,如果成功就返回更新至,否则重试到成功为止。这里可能存在一个隐患,那就是循环时间过长,总是在当前线程compareAndSet时,有另一个线程设置了value(点子太背了),这个当然是属于小概率事件,目前Java貌似还不能处理这种情况。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  java 线程 并发 CAS