您的位置:首页 > 理论基础

常用编码及计算机编码发展史

2017-03-26 16:57 225 查看
 1. 编码的具体实现方式

gb2312:ascii无法表示汉字,GB2312是对 ASCII 的中文扩展,即国标2312,GB2312标准共收录6763个汉字,其中一级汉字3755个,二级汉字3008个;同时收录了包括拉丁字母、希腊字母、日文平假名及片假名字母、俄语西里尔字母在内的682个字符。GB2312的出现,基本满足了汉字的计算机处理需要,它所收录的汉字已经覆盖中国大陆99.75%的使用频率。但对于人名、古汉语等方面出现的罕用字和繁体字,GB2312不能处理,因此后来GBK字符集出现以解决这些问题。

 

gbk:汉字内码扩展规范(GBK即“国标”、“扩展”汉语拼音的第一个字母,英文名称:Chinese Internal Code Specification),对gb2312的扩展

 

utf-8:UTF-8:Unicode Transformation Format-8bit。考虑到unicode编码不兼容iso8859-1,而且容易占用更多的空间,所以unicode不便于传输和存储。因此而产生了utf编码,utf编码兼容iso8859-1编码,同时也可以用来表示所有语言的字符。允许含BOM,但通常不含BOM。是用以解决国际上字符的一种多字节编码,它对英文使用8位(即一个字节),中文使用24为(三个字节)来编码。UTF-8包含全世界所有国家需要用到的字符,是国际编码,通用性强。UTF-8编码的文字可以在各国支持UTF8字符集的浏览器上显示。如,如果是UTF8编码,则在外国人的英文IE上也能显示中文,他们无需下载IE的中文语言支持包。

unicode统一规定,每个符号用三个或四个字节表示,那么每个英文字母前都必然有二到三个字节是0,这对于存储空间来说是极大的浪费,文本文件的大小会因此大出二三倍,这是难以接受的。unicode在很长一段时间内无法推广,直到互联网的出现,为解决unicode如何在网络上传输的问题,于是面向传输的众多rUTF(UCSrTransferrFormat)标准出现了,顾名思义,UTF-8就是每次8个位传输数据,而UTF-16就是每次16个位。UTF-8就是在互联网上使用最广的一种unicode的实现方式,这是为传输而设计的编码,并使编码无国界,这样就可以显示全世界上所有文化的字符了。UTF-8最大的一个特点,就是它是一种变长的编码方式。它可以使用1~4个字节表示一个符号,根据不同的符号而变化字节长度,当字符在ASCIIr码的范围时,就用一个字节表示,保留了ASCII字符一个字节的编码,注意的是unicode一个中文字符占2个字节,而UTF-8一个中文字符占3个字节。从unicode到uft-8并不是直接的对应,而是要过一些算法和规则来转换。

 

2. 三种编码方式

iso-8859-1:也叫做Latin-1,ISO-8859-1编码是单字节编码,向下兼容ASCII,其编码范围是0x00-0xFF,0x00-0x7F之间完全和ASCII一致,0x80-0x9F之间是控制字符,0xA0-0xFF之间是文字符号。从本质上说,ISO-8859-1是单字节编码,自身不能显示中文,若要显示中文,必须和其他能显示中文的编码配合,如“GBK”,“UTF-8",以ISO-8859-1编码的文本,都以bytes[]的形式保存,若要显示中文,只需以显示平台的默认编码格式进行解码即可。若仍然以ISO-8859-1格式解码,得到的中文字符肯定是乱码,因为ISO-8859-1自身不能显示中文。

 

ascii:大家都把这个方案叫做 ANSI 的”Ascii”编码,American Standard Code forInformation Interchange,美国信息互换标准代码,0-256中状态,适用于美国的字符表示unicode:各个国家都像中国这样搞出一套自己的编码标准,结果互相之间谁也不懂谁的编码,谁也不支持别人的编码,一个叫 ISO (国际标谁化组织)的国际组织决定着手解决这个问题。他们采用的方法很简单:废了所有的地区性编码方案,重新搞一个包括了地球上所有文化、所有字母和符号的编码!他们打算叫它”Universal
Multiple-Octet Coded Character Set”,简称 UCS, 俗称 “unicode“。

这是最统一的编码,可以用来表示所有语言的字符,而且是定长双字节(也有四字节的)编码,包括英文字母在内。所以可以说它是不兼容iso8859-1编码的,也不兼容任何编码。相对于iso8859-1编码来说,uniocode编码只是在前面增加了一个0字节,比如字母a为"0061"。因为定长编码便于计算机处理,而unicode又可以用来表示所有字符,所以在很多软件内部是使用unicode编码来处理的,比如java。

 

GBK、GB2312与UTF8之间都必须通过Unicode编码才能相互转换:

GBK、GB2312--Unicode--UTF8

UTF8--Unicode--GBK、GB2312

 

3. java对字符的处理

getBytes(charset):这是java字符串处理的一个标准函数,其作用是将字符串所表示的字符按照charset编码,并以字节方式表示。注意字符串在java内存中总是按unicode编码存储的。比如"中文",正常情况下(即没有错误的时候)存储为"4e2d6587",如果charset为"gbk",则被编码为"d6d0 cec4",然后返回字节"d6 d0 ce c4"。如果charset为"utf8"则最后是"e4 b8 ad e6 96 87"。如果是"iso8859-1",则由于无法编码,最后返回
"3f 3f"(两个问号)。

 

new String(charset):这是java字符串处理的另一个标准函数,和上一个函数的作用相反,将字节数组按照charset编码进行组合识别,最后转换为unicode存储。参考上述getBytes的例子,"gbk" 和"utf8"都可以得出正确的结果"4e2d 6587",但iso8859-1最后变成了"003f 003f"(两个问号)。因为utf8可以用来表示/编码所有字符,所以newString( str.getBytes( "utf8" ), "utf8"
) === str,即完全可逆。

 

setCharacterEncoding():该函数用来设置http请求或者相应的编码。对于request,是指提交内容的编码,指定后可以通过getParameter()则直接获得正确的字符串,如果不指定,则默认使用iso8859-1编码,需要进一步处理。而且,该指定只对POST方法有效,对GET方法无效。分析原因,POST方法在执行第一个getParameter()的时候,java将会按照设定编码分析所有的提交内容,而对于GET方法提交表单,提交的内容在URL中,直接按照编码提交内容。

注意:iso-8859-1是JAVA网络传输使用的标准字符集,而gb2312是标准中文字符集,当提交表单等需要网络传输的操作的时候,就需要把 iso-8859-1转换为gb2312字符集显示,否则如果按浏览器的gb2312格式来解释iso-8859-1字符集的话,由于2者不兼容,会导致乱码。

 

例子:String s = "你好";

// 编码

byte[] utf = s.getBytes("utf-8");

byte[] gbk = s.getBytes("gbk");

System.out.println("utf-8编码:" + Arrays.toString(utf));

//[-28,-67,-96,-27,-91,-67] 6个字节

System.out.println("gbk编码:" + Arrays.toString(gbk));

//[-60,-29,-70,-61] 4个字节

// 解码

String s1 = new String(utf, "utf-8"); // 你好<
4000
/p>
String s2 = new String(utf, "gbk"); // utf用gbk解码:浣犲ソ gbk用2

个字节解码,所以会多一个字符

 

String s3 = new String(gbk, "utf-8"); // gbk用utf-8解码:???

utf-8解码需要6个字节

 

System.out.println("用utf-8编码回去");

s3 = new String(s3.getBytes("utf-8"), "gbk");// 锟斤拷锟?  gbk用utf-8解码后无法编回去

 

规律:

utf-8编码可以用gbk和iso8859-1解码后编回去

gbk编码后只能用iso8859-1解码后编回去

 

 

在JSP页面获取表单的值时会出现乱码,有两种解决方法:

1.在调用getParameter之前通过request.setCharacterEncoding设置字符编码2.调用newString(str.getBytes("iso8859-1"), "UTF-8");编码后解码

 

4. 一个关于编码的故事

很久很久以前,有一群人,他们决定用8个可以开合的晶体管来组合成不同的状态,以表示世界上的万物。他们看到8个开关状态是好的,于是他们把这称为”字节“。再后来,他们又做了一些可以处理这些字节的机器,机器开动了,可以用字节来组合出很多状态,状态开始变来变去。他们看到这样是好的,于是它们就这机器称为”计算机“。开始计算机只在美国用。八位的字节一共可以组合出256(2的8次方)种不同的状态。他们把其中的编号从0开始的32种状态分别规定了特殊的用途,一但终端、打印机遇上约定好的这些字节被传过来时,就要做一些约定的动作。遇上0×10,
终端就换行,遇上0×07, 终端就向人们嘟嘟叫,例好遇上0x1b, 打印机就打印反白的字,或者终端就用彩色显示字母。他们看到这样很好,于是就把这些0×20以下的字节状态称为”控制码”。他们又把所有的空格、标点符号、数字、大小写字母分别用连续的字节状态表示,一直编到了第127号,这样计算机就可以用不同字节来存储英语的文字了。大家看到这样,都感觉很好,于是大家都把这个方案叫做 ANSI 的”Ascii”编码(AmericanStandard Code for Information Interchange,美国信息互换标准代码)。当时世界上所有的计算机都用同样的ASCII方案来保存英文文字。

后来,就像建造巴比伦塔一样,世界各地的都开始使用计算机,但是很多国家用的不是英文,他们的字母里有许多是ASCII里没有的,为了可以在计算机保存他们的文字,他们决定采用127号之后的空位来表示这些新的字母、符号,还加入了很多画表格时需要用到的横线、竖线、交叉等形状,一直把序号编到了最后一个状态255。从128到255这一页的字符集被称”扩展字符集“。从此之后,贪婪的人类再没有新的状态可以用了,美帝国主义可能没有想到还有第三世界国家的人们也希望用到计算机吧!

等中国人们得到计算机时,已经没有可以利用的字节状态来表示汉字,况且有6000多个常用汉字需要保存呢。但是这难不倒智慧的中国人民,我们不客气地把那些127号之后的奇异符号们直接取消掉, 规定:一个小于127的字符的意义与原来相同,但两个大于127的字符连在一起时,就表示一个汉字,前面的一个字节(称之为高字节)从0xA1用到 0xF7,后面一个字节(低字节)从0xA1到0xFE,这样我们就可以组合出大约7000多个简体汉字了。在这些编码里,我们还把数学符号、罗马希腊的字母、日文的假名都编进去了,连在 ASCII
里本来就有的数字、标点、字母都统统重新编了两个字节长的编码,这就是常说的”全角”字符,而原来在127号以下的那些就叫”半角”字符了。中国人民看到这样很不错,于是就把这种汉字方案叫做 “GB2312“。GB2312是对ASCII 的中文扩展。

但是中国的汉字太多了,我们很快就发现有许多人的人名没有办法在这里打出来。于是我们不得不继续把 GB2312 没有用到的码位找出来老实不客气地用上。 后来还是不够用,于是干脆不再要求低字节一定是127号之后的内码,只要第一个字节是大于127就固定表示这是一个汉字的开始,不管后面跟的是不是扩展字符集里的内容。结果扩展之后的编码方案被称为 GBK 标准,GBK包括了GB2312的所有内容,同时又增加了近20000个新的汉字(包括繁体字)和符号。 后来少数民族也要用电脑了,于是我们再扩展,又加了几千个新的少数民族的字,GBK扩成了
GB18030。从此之后,中华民族的文化就可以在计算机时代中传承了。中国的程序员们看到这一系列汉字编码的标准是好的,于是通称他们叫做 “DBCS“(Double Byte Charecter Set 双字节字符集)。在DBCS系列标准里,最大的特点是两字节长的汉字字符和一字节长的英文字符并存于同一套编码方案里,因此他们写的程序为了支持中文处理,必须要注意字串里的每一个字节的值,如果这个值是大于127的,那么就认为一个双字节字符集里的字符出现了。那时候凡是受过加持,会编程的计算机僧侣们都要每天念下面这个咒语数百遍:“一个汉字算两个英文字符!一个汉字算两个英文字符……”

因为当时各个国家都像中国这样搞出一套自己的编码标准,结果互相之间谁也不懂谁的编码,谁也不支持别人的编码,连大陆和台湾这样只相隔了150海里,使用着同一种语言的兄弟地区,也分别采用了不同的 DBCS 编码方案——当时的中国人想让电脑显示汉字,就必须装上一个”汉字系统”,专门用来处理汉字的显示、输入的问题,但是那个台湾的愚昧封建人士写的算命程序,就必须加装另一套支持 BIG5 编码的什么”倚天汉字系统”才可以用,装错了字符系统,显示就会乱了套!这怎么办?而且世界民族之林中还有那些一时用不上电脑的穷苦人民,他们的文字又怎么办?真是计算机的巴比伦塔命题啊!

正在这时,大天使加百列及时出现了——一个叫 ISO (国际标谁化组织)的国际组织决定着手解决这个问题。他们采用的方法很简单:废了所有的地区性编码方案,重新搞一个包括了地球上所有文化、所有字母和符号的编码!他们打算叫它”Universal Multiple-Octet Coded Character Set”,简称 UCS, 俗称 “unicode“。unicode开始制订时,计算机的存储器容量极大地发展了,空间再也不成为问题了。于是 ISO 就直接规定必须用两个字节,也就是16位来统一表示所有的字符,对于ASCII里的那些“半角”字符,unicode包持其原编码不变,只是将其长度由原来的8位扩展为16位,而其他文化和语言的字符则全部重新统一编码。由于”半角”英文符号只需要用到低8位,所以其高8位永远是0,因此这种大气的方案在保存英文文本时会多浪费一倍的空间。

这时候,从旧社会里走过来的程序员开始发现一个奇怪的现象:他们的strlen函数靠不住了,一个汉字不再是相当于两个字符了,而是一个!是的,从unicode开始,无论是半角的英文字母,还是全角的汉字,它们都是统一的”一个字符“!同时,也都是统一的”两个字节“,请注意”字符”和”字节”两个术语的不同,“字节”是一个8位的物理存贮单元,而“字符”则是一个文化相关的符号。在unicode中,一个字符就是两个字节。一个汉字算两个英文字符的时代已经快过去了。unicode同样也不完美,这里就有两个的问题,一个是,如何才能区别unicode和ascii?计算机怎么知道三个字节表示一个符号,而不是分别表示三个符号呢?第二个问题是,我们已经知道,英文字母只用一个字节表示就够了,如果unicode统一规定,每个符号用三个或四个字节表示,那么每个英文字母前都必然有二到三个字节是0,这对于存储空间来说是极大的浪费,文本文件的大小会因此大出二三倍,这是难以接受的。

unicode在很长一段时间内无法推广,直到互联网的出现,为解决unicode如何在网络上传输的问题,于是面向传输的众多 UTF(UCS Transfer Format)标准出现了,顾名思义,UTF-8就是每次8个位传输数据,而UTF-16就是每次16个位。UTF-8就是在互联网上使用最广的一种unicode的实现方式,这是为传输而设计的编码,并使编码无国界,这样就可以显示全世界上所有文化的字符了。UTF-8最大的一个特点,就是它是一种变长的编码方式。它可以使用1~4个字节表示一个符号,根据不同的符号而变化字节长度,当字符在ASCII
码的范围时,就用一个字节表示,保留了ASCII字符一个字节的编码,注意的是unicode一个中文字符占2个字节,而UTF-8一个中文字符占3个字节)。从unicode到uft-8并不是直接的对应,而是要过一些算法和规则来转换。

 

5. 关于utf8的BOM

BOM:Byte Order Mark,字节序标记UTF-8不需要BOM,尽管Unicode 标准允许在 UTF-8 中使用 BOM。但是不含 BOM 的 UTF-8 才是标准形式,在 UTF-8 文件中放置 BOM 主要是微软的习惯。BOM是为 UTF-16 和UTF-32 准备的,用于标记字节序(byte order)。

微软在 UTF-8 中使用 BOM 是因为这样可以把 UTF-8 和 ASCII 等编码明确区分开,但这样的文件在 Windows 之外的操作系统里会带来问题。有没有BOM,即文件开头有没有U+FEFF。UTF-8的网页代码不应使用 BOM,否则常常会出错。BOM设计出来不是用来支持HTML和XML的。要识别文本编码,HTML有charset属性,XML有encoding属性,没必要拉BOM撑场面。虽然理论上BOM可以用来识别UTF-16编码的HTML页面,但实际工程上很少有人这么干。毕竟UTF-16这种编码连ASCII都双字节,实在不适用于做网页。这是一个小例子:为什么这个网页代码
<head> 内的信息会被浏览器理解为在<body> 内?

另附《TheUnicode Standard, Version 6.0》之 3.10 D95 UTF-8 encodingscheme 的一段话:

Whilethere is obviously no need for a byte order signature when using UTF-8, thereare occasions when processes convert UTF-16 or UTF-32 data containing a byteorder mark into UTF-8. When represented in UTF-8, the byte order mark turns intothe byte sequence.
Its usage at the beginning of a UTF-8 data stream is neitherrequired nor recommended by the Unicode Standard, but its presence does notaffect conformance to the UTF-8 encoding scheme. Identification of the bytesequence at the beginning of a data stream can,
however, be taken as a near-certainindication that the data stream is using the UTF-8 encoding scheme.

其实说BOM是个坏习惯也不尽然。BOM也是Unicode标准的一部分,有它特定的适用范围。通常BOM是用来标示Unicode纯文本字节流的,用来提供一种方便的方法让文本处理程序识别读入的.txt文件是哪个Unicode编码(UTF-8,UTF-16BE,UTF-16LE)。Windows相对对BOM处理比较好,是因为Windows把Unicode识别代码集成进了API里,主要是CreateFile()。打开文本文件时它会自动识别并剔除BOM。Windows用这个有历史原因,因为它最初脱胎于多代码页的环境(ANSI环境)。而引入Unicode时Windows的设计者又希望能在用户不注意的情况下同时兼容Unicode和非Unicode(Multiplebyte)文本文件,就只能借助这种小trick了。相比之下,Linux这样的系统在多locale的环境中浸染的时间比较短,再加上社区本身也有足够的动力轻装前进(吐槽:微软对兼容性的要求确实是到了非常偏执的地步,任何一点破坏兼容性的做法都不允许,以至于很多时候是自己绑住自己的双手),所以干脆一步到位进入UTF-8。

BOM不受欢迎主要是在UNIX环境下,因为很多UNIX程序不鸟BOM。主要问题出在UNIX那个所有脚本语言通行的首行#!标示,这东西依赖于shell解析,而很多shell出于兼容的考虑不检测BOM,所以加进BOM时shell会把它解释为某个普通字符输入导致破坏#!标示,这就麻烦了。其实很多现代脚本语言,比如Python,其解释器本身都是能处理BOM的,但是shell卡在这里,没办法,只能躺着也中枪。说起来这也不能怪shell,因为BOM本身违反了一个UNIX设计的常见原则,就是文档中存在的数据必须可见。BOM不能作为可见字符被文本编辑器编辑,就这一条很多UNIX开发者就不满意。顺便说一句,即使脚本语言能处理BOM,随处使用BOM也不是推荐的办法。各个脚本语言对Unicode的处理都有自己的一套,Python的
# -*- coding: utf-8 -*-, Perl的use utf8,都比BOM简单而且可靠。另一个好消息是,即使是必须在Windows和UNIX之间切换的朋友也不会悲催。幸亏在UNIX环境下我们还有VIM这种神器,即使遇到BOM挡道,我们也可以通过 set nobomb; setfileencoding=utf8; w 三条命令解决问题。

最后回头想想,似乎也真就只有Windows坚持用BOM了。

 
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  编码 解码 GB2312 GBK UTF-8