您的位置:首页 > 编程语言 > Java开发

java基础——finalize() and Garbage Collection

2017-03-26 16:30 381 查看

java基础——finalize() and Garbage Collection

一、finalize()简述

  java当中,在进行垃圾回收之前,可能会调用finalize()方法,当垃圾回收器准备好释放对象占用的存储空间,将首选调用其finalize()方法,并且在下一次垃圾回收动作发生时,才会真正地回收对象占用的内存。它与c++当中的析构函数不同,总结有以下几点需要注意。

java当中,对象不一定会被垃圾回收

垃圾回收,并不等同于“析构”

垃圾回收只与内存有关

  简单地说,jvm的垃圾回收器回收以java的方式所创建的内存空间(即使用new),却并不知道使用其它方式来(并非使用new)创建的内存应该如何回收。finalize()方法主要用途就是在回收内存空间时,指明这些jvm不知道如何释放内存的内存,应该怎样去释放空间。(例如打开文件,使用jni调用本地方法等等)虽然它能完成这样的工作,但不建议用finalize方法完成“非内存资源”的清理工作,但建议用于:

① 清理本地对象(通过JNI创建的对象);

② 作为确保某些非内存资源(如Socket、文件等)释放的一个补充:在finalize方法中显式调用其他资源释放方法。

二、finalize所存在的问题

一些与finalize相关的方法,由于一些致命的缺陷,已经被废弃了,如System.runFinalizersOnExit()方法、Runtime.runFinalizersOnExit()方法

System.gc()与System.runFinalization()方法增加了finalize方法执行的机会,但不可盲目依赖它们

Java语言规范并不保证finalize方法会被及时地执行、而且根本不会保证它们会被执行

finalize方法可能会带来性能问题。因为JVM通常在单独的低优先级线程中完成finalize的执行

对象再生问题:finalize方法中,可将待回收对象赋值给GC Roots可达的对象引用,从而达到对象再生的目的

finalize方法至多由GC执行一次(用户当然可以手动调用对象的finalize方法,但并不影响GC对finalize的行为)

  总结一下,java对象的垃圾对象不一定会被回收,所以finalize()方法不一定会被执行,程序员不可太依赖finalize()方法。

三、finalize的执行过程(生命周期)

(1) 首先,大致描述一下finalize流程:当对象变成(GC Roots)不可达时,GC会判断该对象是否覆盖了finalize方法,若未覆盖,则直接将其回收。否则,若对象未执行过finalize方法,将其放入F-Queue队列,由一低优先级线程执行该队列中对象的finalize方法。执行finalize方法完毕后,GC会再次判断该对象是否可达,若不可达,则进行回收,否则,对象“复活”。

(2) 具体的finalize流程:

  对象可由两种状态,涉及到两类状态空间,一是终结状态空间 F = {unfinalized, finalizable, finalized};二是可达状态空间 R = {reachable, finalizer-reachable, unreachable}。各状态含义如下:

unfinalized: 新建对象会先进入此状态,GC并未准备执行其finalize方法,因为该对象是可达的

finalizable: 表示GC可对该对象执行finalize方法,GC已检测到该对象不可达。正如前面所述,GC通过F-Queue队列和一专用线程完成finalize的执行

finalized: 表示GC已经对该对象执行过finalize方法

reachable: 表示GC Roots引用可达

finalizer-reachable(f-reachable):表示不reachable,但可通过某个finalizable对象可达

unreachable:对象不可通过上面两种途径可达

状态变迁图



变迁说明:

新建对象首先处于[reachable, unfinalized]状态(A)

随着程序的运行,一些引用关系会消失,导致状态变迁,从reachable状态变迁到f-reachable(B, C, D)或unreachable(E, F)状态

若JVM检测到处于unfinalized状态的对象变成f-reachable或unreachable,JVM会将其标记为finalizable状态(G,H)。若对象原处于[unreachable, unfinalized]状态,则同时将其标记为f-reachable(H)。

在某个时刻,JVM取出某个finalizable对象,将其标记为finalized并在某个线程中执行其finalize方法。由于是在活动线程中引用了该对象,该对象将变迁到(reachable, finalized)状态(K或J)。该动作将影响某些其他对象从f-reachable状态重新回到reachable状态(L, M, N)

处于finalizable状态的对象不能同时是unreahable的,由第4点可知,将对象finalizable对象标记为finalized时会由某个线程执行该对象的finalize方法,致使其变成reachable。这也是图中只有八个状态点的原因

程序员手动调用finalize方法并不会影响到上述内部标记的变化,因此JVM只会至多调用finalize一次,即使该对象“复活”也是如此。程序员手动调用多少次不影响JVM的行为

若JVM检测到finalized状态的对象变成unreachable,回收其内存(I)

若对象并未覆盖finalize方法,JVM会进行优化,直接回收对象(O)

注:System.runFinalizersOnExit()等方法可以使对象即使处于reachable状态,JVM仍对其执行finalize方法

四、Garbage Collection算法简单介绍

  jvm 中,程序计数器、虚拟机栈、本地方法栈都是随线程而生随线程而灭,栈帧随着方法的进入和退出做入栈和出栈操作,实现了自动的内存清理,因此,我们的内存垃圾回收主要集中于 java 堆和方法区中,在程序运行期间,这部分内存的分配和使用都是动态的。

1.何为gc?

GC(Garbage Collector) roots,特指的是垃圾收集器(Garbage Collector)的对象,GC会收集那些不是GC roots且没有被GC roots引用的对象。一个对象可以属于多个root,GC root有几下种:

Class - 由系统类加载器(system class loader)加载的对象,这些类是不能够被回收的,他们可以以静态字段的方式保存持有其它对象。我们需要注意的一点就是,通过用户自定义的类加载器加载的类,除非相应的java.lang.Class实例以其它的某种(或多种)方式成为roots,否则它们并不是roots

Thread - 活着的线程

Stack Local - Java方法的local变量或参数

JNI Local - JNI方法的local变量或参数

JNI Global - 全局JNI引用

Monitor Used - 用于同步的监控对象

Held by JVM - 用于JVM特殊目的由GC保留的对象,但实际上这个与JVM的实现是有关的。可能已知的一些类型是:系统类加载器、一些JVM知道的重要的异常类、一些用于处理异常的预分配对象以及一些自定义的类加载器等。然而,JVM并没有为这些对象提供其它的信息,因此就只有留给分析分员去确定哪些是属于”JVM持有”的了。

2.对象存活判断

  判断对象是否存活一般有两种方式:

引用计数:每个对象有一个引用计数属性,新增一个引用时计数加1,引用释放时计数减1,计数为0时可以回收。此方法简单,无法解决对象相互循环引用的问题。

可达性分析(Reachability Analysis):从GC Roots开始向下搜索,搜索所走过的路径称为引用链。当一个对象到GC Roots没有任何引用链相连时,则证明此对象是不可用的。不可达对象。


3.垃圾回收算法简介

<
4000
strong>标记-清除算法[/b]

  “标记-清除”(Mark-Sweep)算法,如它的名字一样,算法分为“标记”和“清除”两个阶段:首先标记出所有需要回收的对象,在标记完成后统一回收掉所有被标记的对象。之所以说它是最基础的收集算法,是因为后续的收集算法都是基于这种思路并对其缺点进行改进而得到的。

  它的主要缺点有两个:一个是效率问题,标记和清除过程的效率都不高;另外一个是空间问题,标记清除之后会产生大量不连续的内存碎片,空间碎片太多可能会导致,当程序在以后的运行过程中需要分配较大对象时无法找到足够的连续内存而不得不提前触发另一次垃圾收集动作。



复制算法(copying)

  “复制”(Copying)的收集算法,它将可用内存按容量划分为大小相等的两块,每次只使用其中的一块。当这一块的内存用完了,就将还存活着的对象复制到另外一块上面,然后再把已使用过的内存空间一次清理掉。

  这样使得每次都是对其中的一块进行内存回收,内存分配时也就不用考虑内存碎片等复杂情况,只要移动堆顶指针,按顺序分配内存即可,实现简单,运行高效。只是这种算法的代价是将内存缩小为原来的一半,持续复制长生存期的对象则导致效率降低。



标记-压缩算法

  复制收集算法在对象存活率较高时就要执行较多的复制操作,效率将会变低。更关键的是,如果不想浪费50%的空间,就需要有额外的空间进行分配担保,以应对被使用的内存中所有对象都100%存活的极端情况,所以在老年代一般不能直接选用这种算法。

  根据老年代的特点,有人提出了另外一种“标记-整理”(Mark-Compact)算法,标记过程仍然与“标记-清除”算法一样,但后续步骤不是直接对可回收对象进行清理,而是让所有存活的对象都向一端移动,然后直接清理掉端边界以外的内存。



分代收集算法

  GC分代的基本假设:绝大部分对象的生命周期都非常短暂,存活时间短。“分代收集”(Generational Collection)算法,把Java堆分为新生代和老年代,这样就可以根据各个年代的特点采用最适当的收集算法。在新生代中,每次垃圾收集时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老年代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记-清理”或“标记-整理”算法来进行回收。

学习总结:通过参考java编程思想和其它博文,简单了解了java通过jvm实现内存回收的机制,通过与操作系统的相关知识相结合理解内存如何回收与调用,加深编程过程中对java对象回收的理解。

参考文章:

《Thinking in Java》中关于finalize()和内存回收的介绍

http://www.cnblogs.com/ityouknow/p/5614961.html

http://blog.csdn.net/fenglibing/article/details/8928927

http://blog.csdn.net/pi9nc/article/details/12374049
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  java