您的位置:首页 > 移动开发 > Objective-C

[Java基础要义] Java语言中Object对象的hashCode()取值的底层算法是怎样实现的?

2017-03-14 23:10 751 查看
Java语言中,Object对象有个特殊的方法:hashcode(),
hashcode()表示的是JVM虚拟机为这个Object对象分配的一个int类型的数值,JVM会使用对象的hashcode值来提高对HashMap、Hashtable哈希表存取对象的使用效率。

关于Object对象的hashCode()返回值,网上对它就是一个简单的描述:“JVM根据某种策略生成的”,那么这种策略到底是什么呢?我有一个毛病,遇到这种含糊其辞的东西,就想探个究竟,所以,本文就将hashCode()本地方法的实现给扒出来,也给大家在了解hashCode()的过程中提供一点点帮助吧。

本文将根据openJDK 7源码,向展示Java语言中的Object对象的hashCode() 生成的神秘面纱,我将一步一步地向读者介绍Java Object
的hashcode()方法到底底层调用了什么函数。为了更好地了解这个过程,你可以自己下载openJDK 7 源码,亲自查看和跟踪源码,了解hashCode()的生成过程:

openJDK 7 下载地址1:http://download.java.net/openjdk/jdk7 (官网,下载速度较慢)

openJDK 7 下载地址2 :openjdk-7-fcs-src-b147-27_jun_2011.zip (csdn
网友提供的资源,很不错)


1.查看openJDK 关于 java.lang.Object类及其hashcode()方法的定义:

进入openjdk\jdk\src\share\classes\java\lang目录下,可以看到 Object.java源码,打开,查看hashCode()的定义如下所示:

[java] view
plain copy

print?

public native int hashCode();

即该方法是一个本地方法,Java将调用本地方法库对此方法的实现。由于Object类中有JNI方法调用,按照JNI的规则,应当生成JNI 的头文件,在此目录下执行javah
-jni java.lang.Object
指令,将生成一个java_lang_Object.h头文件,该头文件将在后面用到它

java_lang_Object.h头文件关于hashcode方法的信息如下所示:

[objc] view
plain copy

print?





/*

* Class: java_lang_Object

* Method: hashCode

* Signature: ()I

*/

JNIEXPORT jint JNICALL Java_java_lang_Object_hashCode

(JNIEnv *, jobject);


2. Object对象的hashCode()方法在C语言文件Object.c中实现

打开openjdk\jdk\src\share\native\java\lang\目录,查看Object.c文件,可以看到hashCode()的方法被注册成有JVM_IHashCode方法指针来处理:

[cpp] view
plain copy

print?





#include <stdio.h>

#include <signal.h>

#include <limits.h>

#include "jni.h"

#include "jni_util.h"

#include "jvm.h"

#include "java_lang_Object.h"

static JNINativeMethod methods[] = {

{"hashCode", "()I", (void *)&JVM_IHashCode},//hashcode的方法指针JVM_IHashCode

{"wait", "(J)V", (void *)&JVM_MonitorWait},

{"notify", "()V", (void *)&JVM_MonitorNotify},

{"notifyAll", "()V", (void *)&JVM_MonitorNotifyAll},

{"clone", "()Ljava/lang/Object;", (void *)&JVM_Clone},

};

JNIEXPORT void JNICALL

Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls)

{

(*env)->RegisterNatives(env, cls,

methods, sizeof(methods)/sizeof(methods[0]));

}

JNIEXPORT jclass JNICALL

Java_java_lang_Object_getClass(JNIEnv *env, jobject this)

{

if (this == NULL) {

JNU_ThrowNullPointerException(env, NULL);

return 0;

} else {

return (*env)->GetObjectClass(env, this);

}

}


3.JVM_IHashCode方法指针在 openjdk\hotspot\src\share\vm\prims\jvm.cpp中定义,如下:

[cpp] view
plain copy

print?





JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))

JVMWrapper("JVM_IHashCode");

// as implemented in the classic virtual machine; return 0 if object is NULL

return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;

JVM_END

如上可以看出,JVM_IHashCode方法中调用了ObjectSynchronizer::FastHashCode方法


4. ObjectSynchronizer::fashHashCode方法的实现:

ObjectSynchronizer::fashHashCode()方法在 openjdk\hotspot\src\share\vm\runtime\synchronizer.cpp 文件中实现,其核心代码实现如下所示:

[cpp] view
plain copy

print?





// hashCode() generation :

//

// Possibilities:

// * MD5Digest of {obj,stwRandom}

// * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.

// * A DES- or AES-style SBox[] mechanism

// * One of the Phi-based schemes, such as:

// 2654435761 = 2^32 * Phi (golden ratio)

// HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;

// * A variation of Marsaglia's shift-xor RNG scheme.

// * (obj ^ stwRandom) is appealing, but can result

// in undesirable regularity in the hashCode values of adjacent objects

// (objects allocated back-to-back, in particular). This could potentially

// result in hashtable collisions and reduced hashtable efficiency.

// There are simple ways to "diffuse" the middle address bits over the

// generated hashCode values:

//

static inline intptr_t get_next_hash(Thread * Self, oop obj) {

intptr_t value = 0 ;

if (hashCode == 0) {

// This form uses an unguarded global Park-Miller RNG,

// so it's possible for two threads to race and generate the same RNG.

// On MP system we'll have lots of RW access to a global, so the

// mechanism induces lots of coherency traffic.

value = os::random() ;

} else

if (hashCode == 1) {

// This variation has the property of being stable (idempotent)

// between STW operations. This can be useful in some of the 1-0

// synchronization schemes.

intptr_t addrBits = intptr_t(obj) >> 3 ;

value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;

} else

if (hashCode == 2) {

value = 1 ; // for sensitivity testing

} else

if (hashCode == 3) {

value = ++GVars.hcSequence ;

} else

if (hashCode == 4) {

value = intptr_t(obj) ;

} else {

// Marsaglia's xor-shift scheme with thread-specific state

// This is probably the best overall implementation -- we'll

// likely make this the default in future releases.

unsigned t = Self->_hashStateX ;

t ^= (t << 11) ;

Self->_hashStateX = Self->_hashStateY ;

Self->_hashStateY = Self->_hashStateZ ;

Self->_hashStateZ = Self->_hashStateW ;

unsigned v = Self->_hashStateW ;

v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;

Self->_hashStateW = v ;

value = v ;

}

value &= markOopDesc::hash_mask;

if (value == 0) value = 0xBAD ;

assert (value != markOopDesc::no_hash, "invariant") ;

TEVENT (hashCode: GENERATE) ;

return value;

}

// ObjectSynchronizer::FastHashCode方法的实现,该方法最终会返回我们期望已久的hashcode

intptr_t ObjectSynchronizer::FastHashCode (Thread * Self, oop obj) {

if (UseBiasedLocking) {

// NOTE: many places throughout the JVM do not expect a safepoint

// to be taken here, in particular most operations on perm gen

// objects. However, we only ever bias Java instances and all of

// the call sites of identity_hash that might revoke biases have

// been checked to make sure they can handle a safepoint. The

// added check of the bias pattern is to avoid useless calls to

// thread-local storage.

if (obj->mark()->has_bias_pattern()) {

// Box and unbox the raw reference just in case we cause a STW safepoint.

Handle hobj (Self, obj) ;

// Relaxing assertion for bug 6320749.

assert (Universe::verify_in_progress() ||

!SafepointSynchronize::is_at_safepoint(),

"biases should not be seen by VM thread here");

BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());

obj = hobj() ;

assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");

}

}

// hashCode() is a heap mutator ...

// Relaxing assertion for bug 6320749.

assert (Universe::verify_in_progress() ||

!SafepointSynchronize::is_at_safepoint(), "invariant") ;

assert (Universe::verify_in_progress() ||

Self->is_Java_thread() , "invariant") ;

assert (Universe::verify_in_progress() ||

((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant") ;

ObjectMonitor* monitor = NULL;

markOop temp, test;

intptr_t hash;

markOop mark = ReadStableMark (obj);

// object should remain ineligible for biased locking

assert (!mark->has_bias_pattern(), "invariant") ;

if (mark->is_neutral()) {

hash = mark->hash(); // this is a normal header

if (hash) { // if it has hash, just return it

return hash;

}

hash = get_next_hash(Self, obj); // allocate a new hash code

temp = mark->copy_set_hash(hash); // merge the hash code into header

// use (machine word version) atomic operation to install the hash

test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);

if (test == mark) {

return hash;

}

// If atomic operation failed, we must inflate the header

// into heavy weight monitor. We could add more code here

// for fast path, but it does not worth the complexity.

} else if (mark->has_monitor()) {

monitor = mark->monitor();

temp = monitor->header();

assert (temp->is_neutral(), "invariant") ;

hash = temp->hash();

if (hash) {

return hash;

}

// Skip to the following code to reduce code size

} else if (Self->is_lock_owned((address)mark->locker())) {

temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned

assert (temp->is_neutral(), "invariant") ;

hash = temp->hash(); // by current thread, check if the displaced

if (hash) { // header contains hash code

return hash;

}

// WARNING:

// The displaced header is strictly immutable.

// It can NOT be changed in ANY cases. So we have

// to inflate the header into heavyweight monitor

// even the current thread owns the lock. The reason

// is the BasicLock (stack slot) will be asynchronously

// read by other threads during the inflate() function.

// Any change to stack may not propagate to other threads

// correctly.

}

// Inflate the monitor to set hash code

monitor = ObjectSynchronizer::inflate(Self, obj);

// Load displaced header and check it has hash code

mark = monitor->header();

assert (mark->is_neutral(), "invariant") ;

hash = mark->hash();

if (hash == 0) {

hash = get_next_hash(Self, obj);

temp = mark->copy_set_hash(hash); // merge hash code into header

assert (temp->is_neutral(), "invariant") ;

test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);

if (test != mark) {

// The only update to the header in the monitor (outside GC)

// is install the hash code. If someone add new usage of

// displaced header, please update this code

hash = test->hash();

assert (test->is_neutral(), "invariant") ;

assert (hash != 0, "Trivial unexpected object/monitor header usage.");

}

}

// We finally get the hash ,看到这句话,就特别兴奋,WE FINALLY GET THE HASH!!!!

return hash;

}

好了,经过上述如此复杂步骤,终于生成了我们的hashcode了,上述的代码是使用的C++实现的,我是看不懂啦,不过有一点可以确定:

Java 中Object对象的hashcode()返回值一定不会是Object对象的内存地址这么简单!

即hashcode()返回的不是对象在内存中的地址。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐