您的位置:首页 > 其它

BZOJ 2745: [HEOI2012]Bridge

2017-02-16 22:02 232 查看

2745: [HEOI2012]Bridge

Time Limit: 30 Sec Memory Limit: 128 MB
Submit: 199 Solved: 90
[Submit][Status][Discuss]

Description

fyg背着他的电脑来到河北省来,就是为了见一眼古老的赵州桥。
终于,他来到了赵州桥,放下了电脑,正准备休息。一阵风吹来,从中闪现出一人影。fyg只觉天昏地暗,待得再次睁开眼时,发觉自己已经到了一神奇的国度,置身于一巨大的圆盘之上。放眼看去,四周都是奇形怪状的桥,不远处有一老头盘膝而坐。 fyg还沉浸在惊奇之中,老头(难道就是传说中走过赵州桥的张老头!!)便开口了:凡人,你现在在我的世界中,想要出去就要回答我的问题。fyg只得点头,老头继续道:你现在要去闯关,我给你m种颜色,总共有n关(神仙也懂数学,表示压力巨大。。==)。每一关中有一座桥,在第i关中,桥长度有i个单位,每个单位长度上有2个格子(也就是说这座桥有2i个格子),现在你要计算出:在这座桥上涂色使得桥上相邻格子的颜色不一样总方案数,然后再乘上(2*i)^m。如在第1关,若你手上有2种颜色,分别为蓝色和绿色。则总方案数为2*2*2 =8种,涂色方案数为2(如下图,旋转、翻转相同算不同的方案),然后还要再乘2个2,最后你出来之后我会问你所有关中计算出来的数的和。如果你能答对,我就可以让你出去了,否则就无限轮回吧。
fyg表示这个问题太水了,完全不想算。。。于是, 他马上打开电脑上了QQ找到了喜欢计算的你,求你 帮他直接把最终 答案算出来,让他回到赵州桥上。这两个数都有可能很大,fyg 不想为难你,所以你只要告诉他其除以p的余数。

Input

只有一行,其中包含四个正数n、m、p,分别由一个空格分开。n、m、p含义和题目描 述一致。

Output

一行,表示方案数的和除以p的余数。

Sample Input

2 5 50

Sample Output

30

【样例说明】

总共有2关。

第一关的桥长度为1,总共有2个格子,涂色方案数为20,再乘上2 ^ 5,第一关中 计算出的数为640。

第二关的桥长度为2,总共有4个格子,涂色方案数为260,再乘上4 ^ 5,第二关中 计算出的数为266240。

两个数字加起来除以50余30,故输出为30。

HINT

【数据范围】

对于其中25%的数据,满足 n <= 10^6,m <= 200,p <= 10^9; 对于其中40%的数据,满足 n <= 10^9,m <= 120,p <= 10^9; 对于其中15%的数据,满足 n <= 10^9,m <= 200,p <= 10^9; 对于最后20%的数据,满足 n<= 10^9,m <= 3000,p <= 3000;

Source

[Submit][Status][Discuss]

写了一天的二逼题,KCUF

首先说一下,题目中的桥是2xN的,而不是1x2N的,别想错了,不然就真的走远了。

然后可以手推一下样例,发现是个简单的DP,甚至连DP都称不上,就是个统计问题,这时你应该得到了一个式子——

$answer=2^{m}(m^{2}-m)\sum_{i=1}^{n}{i^{m}(m^{2}-3m+3)^{i-1}}$,推不出来还是洗洗睡吧。

然后看到数据范围,发现有25points是给暴力的,$O(NlogM)$就可以拿到。

然后看出下面的数据要分两种做法——一种针对m较大但是p较小的,一种针对m较小但是p很大的。

m较大,p较小

发现$i^{m}$这一项,在$mod p$意义下有很有意思的性质——$i^{m}=(i mod p)^{m}$。

哎,那岂不是至多每p项$i^{m}$就会出现一个循环吗?而每个循环节之间又是$(m^{2}-3m+3)^{p}$的等比关系(在此默认循环节长度为p),那就暴力求出第一段和公比,就是等比数列求和。蛋疼的是p不一定是素数,所以想用等比公式是不行的,因为没有逆元。然后就可以倍增法或矩阵快速幂。(小生一开始写的倍增,结果越写越乱,最后还是用矩阵幂省心)

m较小,p较大

还是想法搞掉$i^{m}$这一项。发现$i^{m}=[(i-1)+1]^{m}$,然后可以二项式一下就可以搞成DP形式了,$f[i][j]=i^{j}(m^{2}-3m+3)^{i-1}$,f[i]可以从f[i-1]推出来,构造转移矩阵,跑矩阵快速幂并维护前缀和即可。

#include <cstdio>
#include <cstring>

typedef long long lnt;

int n, m, p;

inline int pow(lnt a, int b)
{
lnt r = 1;

while (b)
{
if (b & 1)
r = r * a % p;

b = b >> 1;
a = a * a % p;
}

return r;
}

namespace case1
{    // m <= 200
int lim;
int ans;

int C[205][205];

inline void calculateC(void)
{
for (int i = 0; i <= lim; ++i)
{
C[i][0] = 1;

for (int j = 1, k = 2; j <= i; j += 2, k += 2)
{
C[i][j] = C[i - 1][j - 1] + C[i - 1][j];
C[i][k] = C[i - 1][k - 1] + C[i - 1][k];

if (C[i][j] >= p)C[i][j] -= p;
if (C[i][k] >= p)C[i][k] -= p;
}
}
}

int M[205][205];

inline void calculateM(void)
{
int bas = (m * m - 3*m + 3) % p;

for (int i = 0; i <= m; ++i)
for (int j = i; j <= m; ++j)
M[i][j] = 1LL * bas * C[j][i] % p;

M[m][lim] = M[lim][lim] = 1;
}

int R[205];

inline void calculateR(void)
{
for (int i = 0; i <= m; ++i)R[i] = 1;

for (int t = n; t; t >>= 1)
{
if (t & 1)
{
static int T[205];

memset(T, 0, sizeof T);

for (int i = 0; i <= lim; ++i)
for (int j = 0; j <= lim; ++j)
T[j] = (T[j] + 1LL * R[i] * M[i][j]) % p;

memcpy(R, T, sizeof R);
}

{
static int T[205][205];

memset(T, 0, sizeof T);

for (int i = 0; i <= lim; ++i)
for (int k = 0; k <= lim; ++k)if (M[i][k])
for (int j = 0; j <= lim; ++j)if (M[k][j])
T[i][j] = (T[i][j] + 1LL * M[i][k] * M[k][j]) % p;

memcpy(M, T, sizeof M);
}
}
}

inline void main(void)
{
lim = m + 1;

calculateC();
calculateM();
calculateR();

ans = R[lim];

ans = (1LL * ans * pow(2, m)) % p;
ans = (1LL * ans * (m*m - m)) % p;

printf("%d\n", (ans + p) % p);
}
}

namespace case2
{    // p <= 3000
int bas;
int cnt;
int ans;

int C[2];

inline void calculateC(void)
{
bas = (m * m - 3*m + 3) % p;

for (int i = 1, t = 1; i <= p; ++i, t = t * bas % p)
C[0] = (C[0] + pow(i, m) * t) % p;
}

int M[2][2];

inline void calculateM(void)
{
M[0][0] = pow(bas, p);
M[0][1] = 1;
M[1][1] = 1;
M[1][0] = 0;
}

int R[2][2];

inline void calculateR(void)
{
memcpy(R, C, sizeof C);

for (int t = cnt; t; t >>= 1)
{
if (t & 1)
{
static int T[2][2];

memset(T, 0, sizeof T);

for (int i = 0; i < 2; ++i)
for (int k = 0; k < 2; ++k)if (R[i][k])
for (int j = 0; j < 2; ++j)if (M[k][j])
T[i][j] = (T[i][j] + R[i][k] * M[k][j]) % p;

memcpy(R, T, sizeof R);
}

{
static int T[2][2];

memset(T, 0, sizeof T);

for (int i = 0; i < 2; ++i)
for (int k = 0; k < 2; ++k)if (M[i][k])
for (int j = 0; j < 2; ++j)if (M[k][j])
T[i][j] = (T[i][j] + M[i][k] * M[k][j]) % p;

memcpy(M, T, sizeof M);
}
}
}

inline void main(void)
{
cnt = n / p;

calculateC();
calculateM();
calculateR();

ans = R[0][1];

for (int i = cnt * p + 1; i <= n; ++i)
ans = (ans + pow(i % p, m) * pow(bas, i - 1)) % p;

ans = (1LL * ans * pow(2, m)) % p;
ans = (1LL * ans * (m*m - m)) % p;

printf("%d\n", (ans + p) % p);
}
}

signed main(void)
{
scanf("%d%d%d", &n, &m, &p);

if (m <= 200)
case1::main();
else
case2::main();
}


@Author: YouSiki
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: