您的位置:首页 > 编程语言 > C#

(C#)A*算法伪代码及源码

2017-02-05 15:19 225 查看
A*   AStar   A星

2d游戏,或者网格游戏中
Cost f 总消耗

Cost g 距离起点的消耗

Cost h 距离终点的消耗
默认消耗,直走消耗10,斜着走消耗14

开启列表

关闭列表

父节点
//

开启列表

关闭列表
开始循环(开启列表有值)

 当前点 = 开启列表中最小的f_Cost 

 把当前点从开启列表删除

 把当前点添加到关闭列表

 

 If当前点是终点,跳出循环

 

点开一个红点,周围的点会得到一个新的花费

循环周围的点

 这个点不能走或者在关闭列表中,跳过这个点

 

如果新花费小于原来的花费,

 替换成新的花费

 将这个点(周围的点里面的)的父节点设置为当前点(新点开的红点)
这个点不再开启列表中

 这个点添加到开启列表中

  直接替换成新的花费

  将这个点(周围的点里面的)的父节点设置为当前点(新点开的红点)

源码:

using UnityEngine;
using System.Collections;

public class Node
{
/*逻辑中用的*/
public int gCost;
public int hCost;
public int fCost
{
get { return gCost + hCost; }
}
public Node parent;

/*在Unity当中用的*/
public bool canWalk;
//网格的下标
public int gridX;
public int gridY;
//节点的位置
public Vector3 worldPos;

public Node(bool _canWalk, Vector3 position, int x, int y)
{
canWalk = _canWalk;
worldPos = position;
gridX = x;
gridY = y;
}
}

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class Grid : MonoBehaviour
{
//存放点节点的数组
public Node[,] grid;

//网格的大小
public Vector2 gridSize;
//节点的大小
public float nodeRadius;
public float nodeDiameter;
//一个层,代表可不可以通过
public LayerMask cantLayer;

//x和y方向上各有多少个格子
public int gridContX;
public int gridContY;

//起点
public Transform start;

//用来保存路径的列表
public List<Node> path = new List<Node>();

void Start ()
{
cantLayer = LayerMask.GetMask("CantWalk");
nodeDiameter = nodeRadius * 2;
//gridContX = (int)(gridSize.x / nodeDiameter);
gridContX = Mathf.RoundToInt(gridSize.x / nodeDiameter);
gridContY = Mathf.RoundToInt(gridSize.y / nodeDiameter);

grid = new Node[gridContX, gridContY];
CreatGrid();
}

void Update ()
{

}
//创建格子
void CreatGrid()
{
//网格起点
Vector3 startPoint = transform.position - gridSize.y / 2 * Vector3.forward - gridSize.x / 2 * Vector3.right;

for (int i = 0; i < gridContX; i++)
{
for (int j = 0; j < gridContY; j++)
{
Vector3 worldPos = startPoint + Vector3.right * (nodeDiameter * i + nodeRadius) + Vector3.forward * (nodeDiameter * j + nodeRadius);
//检测有没有碰到不能走的层上的物体
bool canwalk = !Physics.CheckSphere(worldPos, nodeRadius, cantLayer);

grid[i, j] = new Node(canwalk, worldPos, i, j);
}
}
}

//Unity中的辅助类
void OnDrawGizmos()
{
if (grid == null)
{
return;
}
foreach (Node node in grid)
{
if (node.canWalk)
{
Gizmos.color = Color.yellow;
Gizmos.DrawCube(node.worldPos, (nodeDiameter - 0.02f) * new Vector3(1, 0.2f, 1));
}
else
{
Gizmos.color = Color.red;
Gizmos.DrawCube(node.worldPos, (nodeDiameter - 0.02f) * new Vector3(1, 0.2f, 1));
}
}

//画出起点的位置
Node startNode = FindWithPosition(start.position);
if (startNode.canWalk)
{
Gizmos.color = Color.black;
Gizmos.DrawCube(startNode.worldPos, (nodeDiameter - 0.02f) * new Vector3(1, 0.2f, 1));
}

//画路径
if(path != null)
{
foreach (var node in path)
{
Gizmos.color = Color.blue;
Gizmos.DrawCube(node.worldPos, (nodeDiameter - 0.02f) * new Vector3(1, 0.2f, 1));
}
}
}

//通过位置得到在哪一个格子
public Node FindWithPosition(Vector3 position)
{
//在x方向的占比
float percentX = (position.x + gridSize.x / 2) / gridSize.x;
float percentY = (position.z + gridSize.y / 2) / gridSize.y;

//算出在哪个格子
int x = Mathf.RoundToInt((gridContX - 1) * percentX);
int y = Mathf.RoundToInt((gridContY - 1) * percentY);

return grid[x, y];
}

//通过一个点寻找周围的点
public List<Node> GetAroundNode(Node node)
{
List<Node> aroundNodes = new List<Node>();

for (int i = -1; i <= 1; i++)
{
for (int j = -1; j <= 1; j++)
{
//传进来的点的下标  跳过
if(i == 0 && j == 0)
{
continue;
}

int tempX = node.gridX + i;
int tempY = node.gridY + j;

//判断有没有越界
if (tempX >= 0 && tempX < gridContX && tempY >= 0 && tempY < gridContY)
{
aroundNodes.Add(grid[tempX, tempY]);
}
}
}

return aroundNodes;
}
}

using UnityEngine;
using System.Collections;
using System.Collections.Generic;

public class FindPath_AStar : MonoBehaviour
{
public Transform startPoint;
public Transform endPoint;

private Grid grid;
// Use this for initialization
void Start ()
{
grid = GetComponent<Grid>();

}

void Update ()
{
FindPath(startPoint.position, endPoint.position);

}

//
void FindPath(Vector3 startPos, Vector3 endPos)
{
//开启列表
List<Node> opentSet = new List<Node>();
//关闭列表
List<Node> closeSet = new List<Node>();

//起点格子
Node startNode = grid.FindWithPosition(startPos);
//终点格子
Node endNode = grid.FindWithPosition(endPos);

//把起点加入开启列表
opentSet.Add(startNode);

//开始循环(开启列表有值)
while (opentSet.Count > 0)
{
//当前点
Node currentNode = opentSet[0];
//开启列表中最小的f_Cost
for (int i = 0; i < opentSet.Count; i++)
{
//如果总花费最小,并且离目标点最近
if (opentSet[i].fCost <= currentNode.fCost && opentSet[i].hCost < currentNode.fCost)
{
currentNode = opentSet[i];
}
}

//把这个点 点红
//把当前点从开启列表删除
opentSet.Remove(currentNode);
//把当前点添加到关闭列表
closeSet.Add(currentNode);

//If当前点是终点,跳出循环
if (currentNode == endNode)
{
GetPath(startNode, endNode);
return;
}

//周围的点
List<Node> around = grid.GetAroundNode(currentNode);
//循环周围的点
foreach (Node node in around)
{
//这个点不能走或者在关闭列表中,跳过这个点
if (!node.canWalk || closeSet.Contains(node))
{
continue;
}
//点开一个红点,周围的点会得到一个新的花费g
int newCost_g = currentNode.gCost + GetCost(currentNode, node);
//比较新花费和原来的花费,谁更小(谁离我们起点近) || 这个点不再开启列表中
if (newCost_g < node.gCost || !opentSet.Contains(node))
{
//替换成新的花费
node.gCost = newCost_g;
node.hCost = GetCost(node, endNode);
//将这个点(周围的点里面的)的父节点设置为当前点(新点开的红点)
node.parent = currentNode;

//这个点不再开启列表中
if (!opentSet.Contains(node))
{
opentSet.Add(node);
}
}
}
}
}

//计算花费
int GetCost(Node a, Node b)
{
//等到两点之间的一个距离(x方向和y方向)
int coutX = Mathf.Abs(a.gridX - b.gridX);
int coutY = Mathf.Abs(a.gridY - b.gridY);

if(coutX > coutY)
{
return (coutX - coutY) * 10 + coutY * 14;
}
else
{
return (coutY - coutX) * 10 + coutX * 14;
}
}

//得到路径
void GetPath(Node startNode, Node endNode)
{
List<Node> path = new List<Node>();
Node temp = endNode;
while(temp != startNode)
{
path.Add(temp);
temp = temp.parent;
}
//列表转置
path.Reverse();
grid.path = path;
}
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: