您的位置:首页 > 其它

学习笔记 05 --- JUC锁

2017-01-13 09:55 302 查看
学习笔记 05 --- JUC锁

LockSupport:

LockSupport是用来创建锁和其他同步类的基本线程阻塞原语。
LockSupport通过unsafe函数中的接口来实现阻塞和解除阻塞的,AQS和其他的lock都会使用到这个基础类。
LockSupport中的park() 和 unpark() 的作用分别是阻塞线程和解除阻塞线程(park()---获取许可,unpark()---释放许可),而且park()和unpark()不会遇到“Thread.suspend
和 Thread.resume所可能引发的死锁”问题。因为park() 和 unpark()有许可的存在;调用 park() 的线程和另一个试图将其 unpark() 的线程之间的竞争将保持活性。

注:
park()/unpark()和wait()/notify()的区别是后者让线程阻塞和解除阻塞前,必须通过synchronized获取对象的同步锁。
unpark函数可以先于park调用。比如线程B调用unpark函数,给线程A发了一个“许可”,那么当线程A调用park时,它发现已经有“许可”了,那么它会马上再继续运行。
LockSupport不可重入,如果一个线程连续2次调用 LockSupport .park(),那么该线程一定会一直阻塞下去。

LockSupport 只能阻塞当前线程,但是可以唤醒任意线程。

LockSupport 的park和Object的wait一样可以相应中断。但是线程如果因为调用park而阻塞的话,能够响应中断请求(中断状态被设置成true),但是不会抛出InterruptedException


*******************************************************************************************************************************
Thread.interrupt()方法不会中断一个正在运行的线程。这一方法实际上完成的是,在线程受到阻塞时抛出一个中断信号,这样线程就得以退出阻塞的状态。更确切的说,如果线程被Object.wait, Thread.join和Thread.sleep三种方法之一阻塞,那么,它将接收到一个中断异常(InterruptedException),从而提早地终结被阻塞状态。

*******************************************************************************************************************************

LockSupport的源码如下所示:

/*
* @(#)LockSupport.java	1.12 06/03/30
*
* Copyright 2006 Sun Microsystems, Inc. All rights reserved.
* SUN PROPRIETARY/CONFIDENTIAL. Use is subject to license terms.
*/

package java.util.concurrent.locks;
import java.util.concurrent.*;
import sun.misc.Unsafe;

/**
* Basic thread blocking primitives for creating locks and other
* synchronization classes.
*
* <p>This class associates, with each thread that uses it, a permit
* (in the sense of the {@link java.util.concurrent.Semaphore
* Semaphore} class). A call to {@code park} will return immediately
* if the permit is available, consuming it in the process; otherwise
* it <em>may</em> block.  A call to {@code unpark} makes the permit
* available, if it was not already available. (Unlike with Semaphores
* though, permits do not accumulate. There is at most one.)
*
* <p>Methods {@code park} and {@code unpark} provide efficient
* means of blocking and unblocking threads that do not encounter the
* problems that cause the deprecated methods {@code Thread.suspend}
* and {@code Thread.resume} to be unusable for such purposes: Races
* between one thread invoking {@code park} and another thread trying
* to {@code unpark} it will preserve liveness, due to the
* permit. Additionally, {@code park} will return if the caller's
* thread was interrupted, and timeout versions are supported. The
* {@code park} method may also return at any other time, for "no
* reason", so in general must be invoked within a loop that rechecks
* conditions upon return. In this sense {@code park} serves as an
* optimization of a "busy wait" that does not waste as much time
* spinning, but must be paired with an {@code unpark} to be
* effective.
*
* <p>The three forms of {@code park} each also support a
* {@code blocker} object parameter. This object is recorded while
* the thread is blocked to permit monitoring and diagnostic tools to
* identify the reasons that threads are blocked. (Such tools may
* access blockers using method {@link #getBlocker}.) The use of these
* forms rather than the original forms without this parameter is
* strongly encouraged. The normal argument to supply as a
* {@code blocker} within a lock implementation is {@code this}.
*
* <p>These methods are designed to be used as tools for creating
* higher-level synchronization utilities, and are not in themselves
* useful for most concurrency control applications.  The {@code park}
* method is designed for use only in constructions of the form:
* <pre>while (!canProceed()) { ... LockSupport.park(this); }</pre>
* where neither {@code canProceed} nor any other actions prior to the
* call to {@code park} entail locking or blocking.  Because only one
* permit is associated with each thread, any intermediary uses of
* {@code park} could interfere with its intended effects.
*
* <p><b>Sample Usage.</b> Here is a sketch of a first-in-first-out
* non-reentrant lock class:
* <pre>{@code
* class FIFOMutex {
*   private final AtomicBoolean locked = new AtomicBoolean(false);
*   private final Queue<Thread> waiters
*     = new ConcurrentLinkedQueue<Thread>();
*
*   public void lock() {
*     boolean wasInterrupted = false;
*     Thread current = Thread.currentThread();
*     waiters.add(current);
*
*     // Block while not first in queue or cannot acquire lock
*     while (waiters.peek() != current ||
*            !locked.compareAndSet(false, true)) {
*        LockSupport.park(this);
*        if (Thread.interrupted()) // ignore interrupts while waiting
*          wasInterrupted = true;
*     }
*
*     waiters.remove();
*     if (wasInterrupted)          // reassert interrupt status on exit
*        current.interrupt();
*   }
*
*   public void unlock() {
*     locked.set(false);
*     LockSupport.unpark(waiters.peek());
*   }
* }}</pre>
*/

public class LockSupport {
private LockSupport() {} // Cannot be instantiated.

// Hotspot implementation via intrinsics API
private static final Unsafe unsafe = Unsafe.getUnsafe();
private static final long parkBlockerOffset;

static {
try {
parkBlockerOffset = unsafe.objectFieldOffset
(java.lang.Thread.class.getDeclaredField("parkBlocker"));
} catch (Exception ex) { throw new Error(ex); }
}

private static void setBlocker(Thread t, Object arg) {
// Even though volatile, hotspot doesn't need a write barrier here.
unsafe.putObject(t, parkBlockerOffset, arg);
}

/**
* Makes available the permit for the given thread, if it
* was not already available.  If the thread was blocked on
* {@code park} then it will unblock.  Otherwise, its next call
* to {@code park} is guaranteed not to block. This operation
* is not guaranteed to have any effect at all if the given
* thread has not been started.
*
* @param thread the thread to unpark, or {@code null}, in which case
*        this operation has no effect
*/
// 如果给定线程的许可尚不可用,则使其可用。
public static void unpark(Thread thread) {
if (thread != null)
unsafe.unpark(thread);
}

/**
* Disables the current thread for thread scheduling purposes unless the
* permit is available.
*
* <p>If the permit is available then it is consumed and the call returns
* immediately; otherwise
* the current thread becomes disabled for thread scheduling
* purposes and lies dormant until one of three things happens:
*
* <ul>
* <li>Some other thread invokes {@link #unpark unpark} with the
* current thread as the target; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
*
* <li>The call spuriously (that is, for no reason) returns.
* </ul>
*
* <p>This method does <em>not</em> report which of these caused the
* method to return. Callers should re-check the conditions which caused
* the thread to park in the first place. Callers may also determine,
* for example, the interrupt status of the thread upon return.
*
* @param blocker the synchronization object responsible for this
*        thread parking
* @since 1.6
*/
// 为了线程调度,在许可可用之前禁用当前线程。
public static void park(Object blocker) {
Thread t = Thread.currentThread();
setBlocker(t, blocker);
unsafe.park(false, 0L);
setBlocker(t, null);
}

/**
* Disables the current thread for thread scheduling purposes, for up to
* the specified waiting time, unless the permit is available.
*
* <p>If the permit is available then it is consumed and the call
* returns immediately; otherwise the current thread becomes disabled
* for thread scheduling purposes and lies dormant until one of four
* things happens:
*
* <ul>
* <li>Some other thread invokes {@link #unpark unpark} with the
* current thread as the target; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts} the current
* thread; or
*
* <li>The specified waiting time elapses; or
*
* <li>The call spuriously (that is, for no reason) returns.
* </ul>
*
* <p>This method does <em>not</em> report which of these caused the
* method to return. Callers should re-check the conditions which caused
* the thread to park in the first place. Callers may also determine,
* for example, the interrupt status of the thread, or the elapsed time
* upon return.
*
* @param blocker the synchronization object responsible for this
*        thread parking
* @param nanos the maximum number of nanoseconds to wait
* @since 1.6
*/
// 为了线程调度,在许可可用前禁用当前线程,并最多等待指定的等待时间。
public static void parkNanos(Object blocker, long nanos) {
if (nanos > 0) {
Thread t = Thread.currentThread();
setBlocker(t, blocker);
unsafe.park(false, nanos);
setBlocker(t, null);
}
}

/**
* Disables the current thread for thread scheduling purposes, until
* the specified deadline, unless the permit is available.
*
* <p>If the permit is available then it is consumed and the call
* returns immediately; otherwise the current thread becomes disabled
* for thread scheduling purposes and lies dormant until one of four
* things happens:
*
* <ul>
* <li>Some other thread invokes {@link #unpark unpark} with the
* current thread as the target; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts} the
* current thread; or
*
* <li>The specified deadline passes; or
*
* <li>The call spuriously (that is, for no reason) returns.
* </ul>
*
* <p>This method does <em>not</em> report which of these caused the
* method to return. Callers should re-check the conditions which caused
* the thread to park in the first place. Callers may also determine,
* for example, the interrupt status of the thread, or the current time
* upon return.
*
* @param blocker the synchronization object responsible for this
*        thread parking
* @param deadline the absolute time, in milliseconds from the Epoch,
*        to wait until
* @since 1.6
*/
// 为了线程调度,在指定的时限前禁用当前线程,除非许可可用。
public static void parkUntil(Object blocker, long deadline) {
Thread t = Thread.currentThread();
setBlocker(t, blocker);
unsafe.park(true, deadline);
setBlocker(t, null);
}

/**
* Returns the blocker object supplied to the most recent
* invocation of a park method that has not yet unblocked, or null
* if not blocked.  The value returned is just a momentary
* snapshot -- the thread may have since unblocked or blocked on a
* different blocker object.
*
* @return the blocker
* @since 1.6
*/
// 返回提供给最近一次尚未解除阻塞的 park 方法调用的 blocker 对象,如果该调用不受阻塞,则返回 null。
public static Object getBlocker(Thread t) {
return unsafe.getObjectVolatile(t, parkBlockerOffset);
}

/**
* Disables the current thread for thread scheduling purposes unless the
* permit is available.
*
* <p>If the permit is available then it is consumed and the call
* returns immediately; otherwise the current thread becomes disabled
* for thread scheduling purposes and lies dormant until one of three
* things happens:
*
* <ul>
*
* <li>Some other thread invokes {@link #unpark unpark} with the
* current thread as the target; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
*
* <li>The call spuriously (that is, for no reason) returns.
* </ul>
*
* <p>This method does <em>not</em> report which of these caused the
* method to return. Callers should re-check the conditions which caused
* the thread to park in the first place. Callers may also determine,
* for example, the interrupt status of the thread upon return.
*/
// 为了线程调度,禁用当前线程,除非许可可用。
public static void park() {
unsafe.park(false, 0L);
}

/**
* Disables the current thread for thread scheduling purposes, for up to
* the specified waiting time, unless the permit is available.
*
* &
20000
lt;p>If the permit is available then it is consumed and the call
* returns immediately; otherwise the current thread becomes disabled
* for thread scheduling purposes and lies dormant until one of four
* things happens:
*
* <ul>
* <li>Some other thread invokes {@link #unpark unpark} with the
* current thread as the target; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
*
* <li>The specified waiting time elapses; or
*
* <li>The call spuriously (that is, for no reason) returns.
* </ul>
*
* <p>This method does <em>not</em> report which of these caused the
* method to return. Callers should re-check the conditions which caused
* the thread to park in the first place. Callers may also determine,
* for example, the interrupt status of the thread, or the elapsed time
* upon return.
*
* @param nanos the maximum number of nanoseconds to wait
*/
// 为了线程调度禁用当前线程,最多等待指定的等待时间,除非许可可用。
public static void parkNanos(long nanos) {
if (nanos > 0)
unsafe.park(false, nanos);
}

/**
* Disables the current thread for thread scheduling purposes, until
* the specified deadline, unless the permit is available.
*
* <p>If the permit is available then it is consumed and the call
* returns immediately; otherwise the current thread becomes disabled
* for thread scheduling purposes and lies dormant until one of four
* things happens:
*
* <ul>
* <li>Some other thread invokes {@link #unpark unpark} with the
* current thread as the target; or
*
* <li>Some other thread {@linkplain Thread#interrupt interrupts}
* the current thread; or
*
* <li>The specified deadline passes; or
*
* <li>The call spuriously (that is, for no reason) returns.
* </ul>
*
* <p>This method does <em>not</em> report which of these caused the
* method to return. Callers should re-check the conditions which caused
* the thread to park in the first place. Callers may also determine,
* for example, the interrupt status of the thread, or the current time
* upon return.
*
* @param deadline the absolute time, in milliseconds from the Epoch,
*        to wait until
*/
// 为了线程调度,在指定的时限前禁用当前线程,除非许可可用。
public static void parkUntil(long deadline) {
unsafe.park(true, deadline);
}
}

ReentrantLock---互斥锁:

ReentrantLock是一个可重入的互斥锁,又被称为“独占锁”。ReentrantLock锁在同一个时间点只能被一个线程锁持有;而可重入的意思是,ReentrantLock锁,可以被单个线程多次获取。
ReentrantLock分为“公平锁”和“非公平锁”。它们的区别体现在获取锁的机制上是否公平。“锁”是为了保护竞争资源,防止多个线程同时操作线程而出错,ReentrantLock在同一个时间点只能被一个线程获取(当某线程获取到“锁”时,其它线程就必须等待);ReentraantLock是通过一个FIFO的等待队列来管理获取该锁所有线程的。在“公平锁”的机制下,线程依次排队获取锁;而“非公平锁”在锁是可获取状态时,不管自己是不是在队列的开头都会获取锁。

ReentrantLock 与 synchronized的区别:
1、与synchronized相比,ReentrantLock提供了更多,更加全面的功能,具备更强的扩展性。例如:时间锁等候,可中断锁等候,锁投票。
2、ReentrantLock还提供了条件Condition,对线程的等待、唤醒操作更加详细和灵活,所以在多个条件变量和高度竞争锁的地方,ReentrantLock更加适合。
3、ReentrantLock提供了可轮询的锁请求。它会尝试着去获取锁,如果成功则继续,否则可以等到下次运行时处理,而synchronized则一旦进入锁请求要么成功要么阻塞,所以相比synchronized而言,ReentrantLock会不容易产生死锁些。
4、ReentrantLock支持更加灵活的同步代码块,但是使用synchronized时,只能在同一个synchronized块结构中获取和释放。注:ReentrantLock的锁释放一定要在finally中处理,否则可能会产生严重的后果。
5、ReentrantLock支持中断处理,且性能较synchronized会好些。

6、ReentrantLock持有的锁是需要手动通过unlock去关闭的。

ReentrantLock实现了Lock接口,内部使用static类继承AQS实现独占式的api来实现具体功能,使用AQS的state来表示锁可重入次数。对于公平和非公平的定义是通过对AbstractQueuedSynchronizer的扩展加以实现的,也就是在tryAcquire的实现上做了不同的控制,ReentrantLock中有3个内部类,分别是Sync、FairSync和NonfairSync,类结构如下所示:

ReentrantLock-->Lock
NonfairSync/FairSync-->Sync-->AbstractQueuedSynchronizer-->AbstractOwnableSynchronizer
NonfairSync/FairSync-->Sync是ReentrantLock的三个内部类
Node是AbstractQueuedSynchronizer的内部类

内部源码部分如下:

<span style="font-size:18px;">abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -5179523762034025860L;

/**
* Performs {@link Lock#lock}. The main reason for subclassing
* is to allow fast path for nonfair version.
*/
abstract void lock();

/**
非公平锁的acquire
*/
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
//判断state是否被占用
if (c == 0) {
//没有被占用,直接cas占用,成功的话就设置当前线程为占用线程
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
//如果state不为0,因为是可重入锁,需要判断是不是自己占用的,如果是累加state值
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
//acquire失败,AQS等待队列排队
return false;
}
//release的时候也需要判断是不是当前线程。因为可重入,所以可以lock多次,release的时候就要release多次
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
setState(c);
return free;
}
/**AbstractOwnableSynchronizer.exclusiveOwnerThread 判断是否为当前占用lock的线程*/
protected final boolean isHeldExclusively() {
// While we must in general read state before owner,
// we don't need to do so to check if current thread is owner
return getExclusiveOwnerThread() == Thread.currentThread();
}
/**lock.newCondition每次直接new一个AQS的conditionObject维护一个条件队列*/
final ConditionObject newCondition() {
return new ConditionObject();
}

// Methods relayed from outer class

final Thread getOwner() {
return getState() == 0 ? null : getExclusiveOwnerThread();
}

final int getHoldCount() {
return isHeldExclusively() ? getState() : 0;
}

final boolean isLocked() {
return getState() != 0;
}

/**
* Reconstitutes this lock instance from a stream.
* @param s the stream
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
setState(0); // reset to unlocked state
}
}</span>
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;

/**非公平锁进来就cas,成功就设置独占线程,不成功再去Acquire排队,这就是公平不公平的区分*/
final void lock() {
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
/**直接使用父类中notFairAcquire*/
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}

static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;

final void lock() {
acquire(1);
}
/**公平锁的tryAcquire*/
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
//锁还在并且AQS没有其他等待节点,cas设置,然后再设置独占线程
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
//因为是可重入锁,state不为0看是不是自己占用了,如果是更新state值
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
//判断队列没有其他等待节点
public final boolean hasQueuedPredecessors() {
// The correctness of this depends on head being initialized
// before tail and on head.next being accurate if the current
// thread is first in queue.
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}

// 创建一个 ReentrantLock ,默认是“非公平锁”。
ReentrantLock()
// 创建策略是fair的 ReentrantLock。fair为true表示是公平锁,fair为false表示是非公平锁。
ReentrantLock(boolean fair)

// 查询当前线程保持此锁的次数。
int getHoldCount()
// 返回目前拥有此锁的线程,如果此锁不被任何线程拥有,则返回 null。
protected Thread getOwner()
// 返回一个 collection,它包含可能正等待获取此锁的线程。
protected Collection<Thread> getQueuedThreads()
// 返回正等待获取此锁的线程估计数。
int getQueueLength()
// 返回一个 collection,它包含可能正在等待与此锁相关给定条件的那些线程。
protected Collection<Thread> getWaitingThreads(Condition condition)
// 返回等待与此锁相关的给定条件的线程估计数。
int getWaitQueueLength(Condition condition)
// 查询给定线程是否正在等待获取此锁。
boolean hasQueuedThread(Thread thread)
// 查询是否有些线程正在等待获取此锁。
boolean hasQueuedThreads()
// 查询是否有些线程正在等待与此锁有关的给定条件。
boolean hasWaiters(Condition condition)
// 如果是“公平锁”返回true,否则返回false。
boolean isFair()
// 查询当前线程是否保持此锁。
boolean isHeldByCurrentThread()
// 查询此锁是否由任意线程保持。
boolean isLocked()
// 获取锁。
void lock()
// 如果当前线程未被中断,则获取锁。
void lockInterruptibly()
// 返回用来与此 Lock 实例一起使用的 Condition 实例。
Condition newCondition()
// 仅在调用时锁未被另一个线程保持的情况下,才获取该锁。
boolean tryLock()
// 如果锁在给定等待时间内没有被另一个线程保持,且当前线程未被中断,则获取该锁。
boolean tryLock(long timeout, TimeUnit unit)
// 试图释放此锁。
void unlock()


Sync是一个继承AQS的抽象类,使用独占锁,复写了tryRelease方法。tryAcquire方法由它的两个FairSync(公平锁)和NonfairSync(非公平锁)实现。

ReentrantLock根据传入构造方法的布尔型参数实例化出Sync的实现类FairSync和NonfairSync,分别表示公平的Sync和非公平的Sync,非公平会先直接尝试cas修改,不成功再去排队,就是插队,而公平锁就是老老实实请求排队操作。

ReentrantLock非公平锁:



假设线程1调用了ReentrantLock的lock()方法,那么线程1将会独占锁,整个调用链十分简单:



第一个获取锁的线程就做了两件事情:

1、设置AbstractQueuedSynchronizer的state为1

2、设置AbstractOwnableSynchronizer的thread为当前线程

那么这两步做完之后就表示线程1独占了锁。然后线程2也要尝试获取同一个锁,在线程1没有释放锁的情况下必然是行不通的,所以线程2就要阻塞。那么,线程2如何被阻塞?看下线程2的方法调用链,这就比较复杂了:



lock()
lock()在ReentrantLock.java的NonfairSync类中实现,它的源码如下:

1 final void lock() {
2     if (compareAndSetState(0, 1))
3         setExclusiveOwnerThread(Thread.currentThread());
4     else
5         acquire(1);
6 }


说明

lock()会先通过compareAndSet(0, 1)来判断“锁”是不是空闲状态。是的话,“当前线程”直接获取“锁”;否则的话,调用acquire(1)获取锁。

(01) compareAndSetState()是CAS函数,它的作用是比较并设置当前锁的状态。若锁的状态值为0,则设置锁的状态值为1。

(02) setExclusiveOwnerThread(Thread.currentThread())的作用是,设置“当前线程”为“锁”的持有者。
“公平锁”和“非公平锁”关于lock()的对比

公平锁   -- 公平锁的lock()函数,会直接调用acquire(1)。
非公平锁 -- 非公平锁会先判断当前锁的状态是不是空闲,是的话,就不排队,而是直接获取锁。


acquire()
acquire()在AQS中实现的,它的源码如下:

public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}

(01) “当前线程”首先通过tryAcquire()尝试获取锁。获取成功的话,直接返回;尝试失败的话,进入到等待队列依次排序,然后获取锁。
(02) “当前线程”尝试失败的情况下,会先通过addWaiter(Node.EXCLUSIVE)来将“当前线程”加入到"CLH队列(非阻塞的FIFO队列)"末尾。
(03) 然后,调用acquireQueued()获取锁。在acquireQueued()中,当前线程会等待它在“CLH队列”中前面的所有线程执行并释放锁之后,才能获取锁并返回。如果“当前线程”在休眠等待过程中被中断过,则调用selfInterrupt()来自己产生一个中断。

非公平锁的tryAcquire()在ReentrantLock.java的NonfairSync类中实现,源码如下:

protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}


nonfairTryAcquire()在ReentrantLock.java的Sync类中实现,源码如下:

final boolean nonfairTryAcquire(int acquires) {
// 获取“当前线程”
final Thread current = Thread.currentThread();
// 获取“锁”的状态
int c = getState();
// c=0意味着“锁没有被任何线程锁拥有”
if (c == 0) {
// 若“锁没有被任何线程锁拥有”,则通过CAS函数设置“锁”的状态为acquires。
// 同时,设置“当前线程”为锁的持有者。
if (compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
// 如果“锁”的持有者已经是“当前线程”,
// 则将更新锁的状态。
int nextc = c + acquires;
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}


说明

根据代码,我们可以分析出,tryAcquire()的作用就是尝试去获取锁。

(01) 如果“锁”没有被任何线程拥有,则通过CAS函数设置“锁”的状态为acquires,同时,设置“当前线程”为锁的持有者,然后返回true。

(02) 如果“锁”的持有者已经是当前线程,则将更新锁的状态即可。

(03) 如果不术语上面的两种情况,则认为尝试失败。
“公平锁”和“非公平锁”关于tryAcquire()的对比

公平锁和非公平锁,它们尝试获取锁的方式不同。
公平锁在尝试获取锁时,即使“锁”没有被任何线程锁持有,它也会判断自己是不是CLH等待队列的表头;是的话,才获取锁。
而非公平锁在尝试获取锁时,如果“锁”没有被任何线程持有,则不管它在CLH队列的何处,它都直接获取锁。


private Node addWaiter(Node mode) {
Node node = new Node(Thread.currentThread(), mode);
// Try the fast path of enq; backup to full enq on failure
Node pred = tail;
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
enq(node);
return node;
}

先创建一个当前线程的Node,模式为独占模式(因为传入的mode是一个NULL),再判断一下队列上有没有节点,没有就创建一个队列,因此走enq方法:

1 private Node enq(final Node node) {
2     for (;;) {
3         Node t = tail;
4         if (t == null) { // Must initialize
5             Node h = new Node(); // Dummy header
6             h.next = node;
7             node.prev = h;
8             if (compareAndSetHead(h)) {
9                 tail = node;
10                 return h;
11             }
12         }
13         else {
14             node.prev = t;
15             if (compareAndSetTail(t, node)) {
16                 t.next = node;
17                 return t;
18             }
19         }
20     }
21 }

上面这段代码可以用下图很好的标示出来:



每一步都用图表示出来了,由于线程2所在的Node是第一个要等待的Node,因此FIFO队列上肯定没有内容,tail为null,走的就是第4行~第10行的代码逻辑。这里用了CAS设置头Node,当然有可能线程2设置头Node的时候CPU切换了,线程3已经把头Node设置好了形成了上图所示的一个队列,这时线程2再循环一次获取tail,由于tail是volatile的,所以对线程2可见,线程2看见tail不为null,就走到了13行的else里面去往尾Node后面添加自身。整个过程下来,形成了一个双向队列。最后走AQS的acquireQueued(node,
1):

1 final boolean acquireQueued(final Node node, int arg) {
2     try {
3         boolean interrupted = false;
4         for (;;) {
5             final Node p = node.predecessor();
6             if (p == head && tryAcquire(arg)) {
7                 setHead(node);
8                 p.next = null; // help GC
9                 return interrupted;
10             }
11             if (shouldParkAfterFailedAcquire(p, node) &&
12                 parkAndCheckInterrupt())
13                 interrupted = true;
14         }
15     } catch (RuntimeException ex) {
16         cancelAcquire(node);
17         throw ex;
18     }
19 }

此时再做判断,由于线程2是双向队列的真正的第一个Node(前面还有一个h),所以第5行~第10行再次判断一下线程2能不能获取锁(可能这段时间内线程1已经执行完了把锁释放了,state从1变为了0),如果还是不行,先调用AQS的shouldParkAfterFailedAcquire(p, node)方法:

1 private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
2     int s = pred.waitStatus;
3     if (s < 0)
4         /*
5          * This node has already set status asking a release
6          * to signal it, so it can safely park
7          */
8         return true;
9     if (s > 0) {
10         /*
11          * Predecessor was cancelled. Skip over predecessors and
12          * indicate retry.
13          */
14     do {
15     node.prev = pred = pred.prev;
16     } while (pred.waitStatus > 0);
17     pred.next = node;
18 }
19     else
20         /*
21          * Indicate that we need a signal, but don't park yet. Caller
22          * will need to retry to make sure it cannot acquire before
23          * parking.
24          */
25          compareAndSetWaitStatus(pred, 0, Node.SIGNAL);
26     return false;
27 }

这个waitStatus是h的waitStatus,很明显是0,所以此时把h的waitStatus设置为Noed.SIGNAL即-1并返回false。既然返回了false,上面的acquireQueued的11行if自然不成立,再走一次for循环,还是先尝试获取锁,不成功,继续走shouldParkAfterFailedAcquire,此时waitStatus为-1,小于0,走第三行的判断,返回true。然后走acquireQueued的11行if的第二个判断条件parkAndCheckInterrupt:

private final boolean parkAndCheckInterrupt() {
LockSupport.park(this);
return Thread.interrupted();
}

public static void park(Object blocker) {
Thread t = Thread.currentThread();
setBlocker(t, blocker);
unsafe.park(false, 0L);
setBlocker(t, null);
}

最后一步,调用LockSupport的park方法阻塞住了当前的线程。

简化版的步骤:(非公平锁的核心)

基于CAS尝试将state(锁数量)从0设置为1

A、如果设置成功,设置当前线程为独占锁的线程;

B、如果设置失败,还会再获取一次锁数量,

B1、如果锁数量为0,再基于CAS尝试将state(锁数量)从0设置为1一次,如果设置成功,设置当前线程为独占锁的线程;

B2、如果锁数量不为0或者上边的尝试又失败了,查看当前线程是不是已经是独占锁的线程了,如果是,则将当前的锁数量+1;如果不是,则将该线程封装在一个Node内,并加入到等待队列中去。等待被其前一个线程节点唤醒。

ReentrantLock公平锁:

lock()
lock()在ReentrantLock.java的FairSync类中实现,它的源码如下:

final void lock() {
acquire(1);
}


说明:“当前线程”实际上是通过acquire(1)获取锁的。

        这里说明一下“1”的含义,它是设置“锁的状态”的参数。对于“独占锁”而言,锁处于可获取状态时,它的状态值是0;锁被线程初次获取到了,它的状态值就变成了1。

        由于ReentrantLock(公平锁/非公平锁)是可重入锁,所以“独占锁”可以被单个线程多此获取,每获取1次就将锁的状态+1。也就是说,初次获取锁时,通过acquire(1)将锁的状态值设为1;再次获取锁时,将锁的状态值设为2;依次类推...这就是为什么获取锁时,传入的参数是1的原因了。

        可重入就是指锁可以被单个线程多次获取。
acquire()
acquire()在AQS中实现的,它的源码如下:

public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}


(01) “当前线程”首先通过tryAcquire()尝试获取锁。获取成功的话,直接返回;尝试失败的话,进入到等待队列排序等待(前面还有可能有需要线程在等待该锁)。

(02) “当前线程”尝试失败的情况下,先通过addWaiter(Node.EXCLUSIVE)来将“当前线程”加入到"CLH队列(非阻塞的FIFO队列)"末尾。CLH队列就是线程等待队列。

(03) 再执行完addWaiter(Node.EXCLUSIVE)之后,会调用acquireQueued()来获取锁。由于此时ReentrantLock是公平锁,它会根据公平性原则来获取锁。

(04) “当前线程”在执行acquireQueued()时,会进入到CLH队列中休眠等待,直到获取锁了才返回!如果“当前线程”在休眠等待过程中被中断过,acquireQueued会返回true,此时"当前线程"会调用selfInterrupt()来自己给自己产生一个中断。
tryAcquire()
公平锁的tryAcquire()在ReentrantLock.java的FairSync类中实现,源码如下:

protected final boolean tryAcquire(int acquires) {
// 获取“当前线程”
final Thread current = Thread.currentThread();
// 获取“独占锁”的状态
int c = getState();
// c=0意味着“锁没有被任何线程锁拥有”,
if (c == 0) {
// 若“锁没有被任何线程锁拥有”,
// 则判断“当前线程”是不是CLH队列中的第一个线程线程,
// 若是的话,则获取该锁,设置锁的状态,并切设置锁的拥有者为“当前线程”。
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
// 如果“独占锁”的拥有者已经为“当前线程”,
// 则将更新锁的状态。
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}


说明:根据代码,我们可以分析出,tryAcquire()的作用就是尝试去获取锁。注意,这里只是尝试!

         尝试成功的话,返回true;尝试失败的话,返回false,后续再通过其它办法来获取该锁。

addWaiter()
addWaiter()在AQS中实现,源码如下:

private Node addWaiter(Node mode) {
// 新建一个Node节点,节点对应的线程是“当前线程”,“当前线程”的锁的模型是mode。
Node node = new Node(Thread.currentThread(), mode);
Node pred = tail;
// 若CLH队列不为空,则将“当前线程”添加到CLH队列末尾
if (pred != null) {
node.prev = pred;
if (compareAndSetTail(pred, node)) {
pred.next = node;
return node;
}
}
// 若CLH队列为空,则调用enq()新建CLH队列,然后再将“当前线程”添加到CLH队列中。
enq(node);
return node;
}


说明:对于“公平锁”而言,addWaiter(Node.EXCLUSIVE)会首先创建一个Node节点,节点的类型是“独占锁”(Node.EXCLUSIVE)类型。然后,再将该节点添加到CLH队列的末尾。
acquireQueued()
acquireQueued()在AQS中实现,源码如下:

final boolean acquireQueued(final Node node, int arg) {
boolean failed = true;
try {
// interrupted表示在CLH队列的调度中,
// “当前线程”在休眠时,有没有被中断过。
boolean interrupted = false;
for (;;) {
// 获取上一个节点。
// node是“当前线程”对应的节点,这里就意味着“获取上一个等待锁的线程”。
final Node p = node.predecessor();
if (p == head && tryAcquire(arg)) {
setHead(node);
p.next = null; // help GC
failed = false;
return interrupted;
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
interrupted = true;
}
} finally {
if (failed)
cancelAcquire(node);
}
}


说明:acquireQueued()的目的是从队列中获取锁。
selfInterrupt()

selfInterrupt()是AQS中实现,源码如下:

private static void selfInterrupt() {
Thread.currentThread().interrupt();
}


说明:selfInterrupt()的代码很简单,就是“当前线程”自己产生一个中断。但是,为什么需要这么做呢?

这必须结合acquireQueued()进行分析。如果在acquireQueued()中,当前线程被中断过,则执行selfInterrupt();否则不会执行。
在acquireQueued()中,即使是线程在阻塞状态被中断唤醒而获取到cpu执行权利;但是,如果该线程的前面还有其它等待锁的线程,根据公平性原则,该线程依然无法获取到锁。它会再次阻塞! 该线程再次阻塞,直到该线程被它的前面等待锁的线程锁唤醒;线程才会获取锁,然后“真正执行起来”!

也就是说,在该线程“成功获取锁并真正执行起来”之前,它的中断会被忽略并且中断标记会被清除! 因为在parkAndCheckInterrupt()中,我们线程的中断状态时调用了Thread.interrupted()。该函数不同于Thread的isInterrupted()函数,isInterrupted()仅仅返回中断状态,而interrupted()在返回当前中断状态之后,还会清除中断状态。 正因为之前的中断状态被清除了,所以这里需要调用selfInterrupt()重新产生一个中断!
总结
再回过头看看acquire()函数,它最终的目的是获取锁!

public final void acquire(int arg) {
if (!tryAcquire(arg) &&
acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
selfInterrupt();
}


(01) 先是通过tryAcquire()尝试获取锁。获取成功的话,直接返回;尝试失败的话,再通过acquireQueued()获取锁。

(02) 尝试失败的情况下,会先通过addWaiter()来将“当前线程”加入到"CLH队列"末尾;然后调用acquireQueued(),在CLH队列中排序等待获取锁,在此过程中,线程处于休眠状态。直到获取锁了才返回。 如果在休眠等待过程中被中断过,则调用selfInterrupt()来自己产生一个中断。

简化版的步骤:(公平锁的核心)

获取一次锁数量,

B1、如果锁数量为0,如果当前线程是等待队列中的头节点,基于CAS尝试将state(锁数量)从0设置为1一次,如果设置成功,设置当前线程为独占锁的线程;

B2、如果锁数量不为0或者当前线程不是等待队列中的头节点或者上边的尝试又失败了,查看当前线程是不是已经是独占锁的线程了,如果是,则将当前的锁数量+1;如果不是,则将该线程封装在一个Node内,并加入到等待队列中去。等待被其前一个线程节点唤醒。


不会尝试CAS操作去插队,而是获取不到锁就去排队。方法和非公平锁类似,不同的地方是FairSync内部类中的tryAcquire方法:

protected final boolean tryAcquire(int acquires) {

            final Thread current = Thread.currentThread();
            int c = getState();
            if (c == 0) {
                if (isFirst(current) &&
                    compareAndSetState(0, acquires)) {
                    setExclusiveOwnerThread(current);
                    return true;
                }
            }
            else if (current == getExclusiveOwnerThread()) {
                int nextc = c + acquires;
                if (nextc < 0)
                    throw new Error("Maximum lock count exceeded");
                setState(nextc);
                return true;
            }
            return false;
        }

从源码中可以看出,上面红色代码的地方是公平锁多出来的代码,通过对公平锁的了解和代码的分析,我认为这个判断是判断当前线程是否为等待时间最长的线程,也就是说队列里面是否有其他线程再等待,如果有其他线程再等待则当前线程不获取锁,返回继续阻塞。这也就是FIFO原理先进来的进程先执行------这个理解不知道是否准确,如果不准确希望大家可以指正出来,在评论中知会我。谢谢!
基于JDK1.7的话
 红色部分代码是:!hasQueuedPredecessors()

ReentrantLock释放锁:

unlock()在ReentrantLock.java中实现的,源码如下:

public void unlock() {
sync.release(1);
}

说明
unlock()是解锁函数,它是通过AQS的release()函数来实现的。
在这里,“1”的含义和“获取锁的函数acquire(1)的含义”一样,它是设置“释放锁的状态”的参数。由于“公平锁”是可重入的,所以对于同一个线程,每释放锁一次,锁的状态-1。

release()
release()在AQS中实现的,源码如下:

1 public final boolean release(int arg) {
2     if (tryRelease(arg)) {
3         Node h = head;
4         if (h != null && h.waitStatus != 0)
5            unparkSuccessor(h);
6         return true;
7     }
8     return false;
9 }

说明
release()会先调用tryRelease()来尝试释放当前线程锁持有的锁。成功的话,则唤醒后继等待线程,并返回true。否则,直接返回false。

tryRelease()
tryRelease()在ReentrantLock.java的Sync类中实现,源码如下:

protected final boolean tryRelease(int releases) {
// c是本次释放锁之后的状态
int c = getState() - releases;
// 如果“当前线程”不是“锁的持有者”,则抛出异常!
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();

boolean free = false;
// 如果“锁”已经被当前线程彻底释放,则设置“锁”的持有者为null,即锁是可获取状态。
if (c == 0) {
free = true;
setExclusiveOwnerThread(null);
}
// 设置当前线程的锁的状态。
setState(c);
return free;
}

首先,只有当c==0的时候才会让free=true,这和上面一个线程多次调用lock方法累加state是对应的,调用了多少次的lock()方法自然必须调用同样次数的unlock()方法才行,这样才把一个锁给全部解开。
当一条线程对同一个ReentrantLock全部解锁之后,AQS的state自然就是0了,AbstractOwnableSynchronizer的exclusiveOwnerThread将被设置为null,这样就表示没有线程占有锁,方法返回true。代码继续往下走,上面的release方法的第四行,h不为null成立,h的waitStatus为-1,不等于0也成立,所以走第5行的unparkSuccessor方法:

unparkSuccessor()
在release()中“当前线程”释放锁成功的话,会唤醒当前线程的后继线程。

根据CLH队列的FIFO规则,“当前线程”(即已经获取锁的线程)肯定是head;如果CLH队列非空的话,则唤醒锁的下一个等待线程。

下面看看unparkSuccessor()的源码,它在AQS中实现。

private void unparkSuccessor(Node node) {
// 获取当前线程的状态
int ws = node.waitStatus;
// 如果状态<0,则设置状态=0
if (ws < 0)
compareAndSetWaitStatus(node, ws, 0);

//获取当前节点的“有效的后继节点”,无效的话,则通过for循环进行获取。
// 这里的有效,是指“后继节点对应的线程状态<=0”
Node s = node.next;
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
// 唤醒“后继节点对应的线程”
if (s != null)
LockSupport.unpark(s.thread);
}

s即h的下一个Node,这个Node里面的线程就是线程2,由于这个Node不等于null,所以走21行,线程2被unPark了,得以运行。有一个很重要的问题是:锁被解了怎样保证整个FIFO队列减少一个Node呢?这是一个很巧妙的设计,又回到了AQS的acquireQueued方法了:

1 final boolean acquireQueued(final Node node, int arg) {
2     try {
3         boolean interrupted = false;
4         for (;;) {
5             final Node p = node.predecessor();
6             if (p == head && tryAcquire(arg)) {
7                 setHead(node);
8                 p.next = null; // help GC
9                 return interrupted;
10             }
11             if (shouldParkAfterFailedAcquire(p, node) &&
12                 parkAndCheckInterrupt())
13                 interrupted = true;
14         }
15     } catch (RuntimeException ex) {
16         cancelAcquire(node);
17         throw ex;
18     }
19 }

被阻塞的线程2是被阻塞在第12行,注意这里并没有return语句,也就是说,阻塞完成线程2依然会进行for循环。然后,阻塞完成了,线程2所在的Node的前驱Node是p,线程2尝试tryAcquire,成功,然后线程2就成为了head节点了,把p的next设置为null,这样原头Node里面的所有对象都不指向任何块内存空间,h属于栈内存的内容,方法结束被自动回收,这样随着方法的调用完毕,原头Node也没有任何的引用指向它了,这样它就被GC自动回收了。此时,遇到一个return语句,acquireQueued方法结束,后面的Node也是一样的原理。
这里有一个细节,看一下setHead方法:
private void setHead(Node node) {
head = node;
node.thread = null;
node.prev = null;
}

setHead方法里面的前驱Node是Null,也没有线程,那么为什么不用一个在等待的线程作为Head Node呢?
因为一个线程随时有可能因为中断而取消,而取消的话,Node自然就要被GC了,那GC前必然要把头Node的后继Node变为一个新的头而且要应对多种情况,这样就很麻烦。用一个没有thread的Node作为头,相当于起了一个引导作用,因为head没有线程,自然也不会被取消。
再看一下上面unparkSuccessor的14行~20行,就是为了防止head的下一个node被取消的情况,这样,就从尾到头遍历,找出离head最近的一个node,对这个node进行unPark操作。

简化版的步骤:(释放锁的步骤)

1)获取当前的锁数量,然后用这个锁数量减去解锁的数量(这里为1),最后得出结果c

2)判断当前线程是不是独占锁的线程,如果不是,抛出异常

3)如果c==0,说明锁被成功释放,将当前的独占线程置为null,锁数量置为0,返回true

4)如果c!=0,说明释放锁失败,锁数量置为c,返回false

5)如果锁被释放成功的话,唤醒距离头节点最近的一个非取消的节点

Condition:

Condition的作用是对锁进行更精确的控制。Condition中的await()方法相当于Object的wait()方法,Condition中的signal()方法相当于Object的notify()方法,Condition中的signalAll()相当于Object的notifyAll()方法。不同的是,Object中的wait(),notify(),notifyAll()方法是和"同步锁"(synchronized关键字)捆绑使用的;而Condition是需要与"互斥锁"/"共享锁"捆绑使用的。

Condition的函数列表:

// 造成当前线程在接到信号或被中断之前一直处于等待状态。
void await()
// 造成当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。
boolean await(long time, TimeUnit unit)
// 造成当前线程在接到信号、被中断或到达指定等待时间之前一直处于等待状态。
long awaitNanos(long nanosTimeout)
// 造成当前线程在接到信号之前一直处于等待状态。
void awaitUninterruptibly()
// 造成当前线程在接到信号、被中断或到达指定最后期限之前一直处于等待状态。
boolean awaitUntil(Date deadline)
// 唤醒一个等待线程。
void signal()
// 唤醒所有等待线程。
void signalAll()

Condition和ReentrantLock联合使用的示例:

import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;

class BoundedBuffer {
final Lock lock = new ReentrantLock();
final Condition notFull  = lock.newCondition();
final Condition notEmpty = lock.newCondition();

final Object[] items = new Object[5];
int putptr, takeptr, count;

public void put(Object x) throws InterruptedException {
lock.lock();    //获取锁
try {
// 如果“缓冲已满”,则等待;直到“缓冲”不是满的,才将x添加到缓冲中。
while (count == items.length)
notFull.await();
// 将x添加到缓冲中
items[putptr] = x;
// 将“put统计数putptr+1”;如果“缓冲已满”,则设putptr为0。
if (++putptr == items.length) putptr = 0;
// 将“缓冲”数量+1
++count;
// 唤醒take线程,因为take线程通过notEmpty.await()等待
notEmpty.signal();

// 打印写入的数据
System.out.println(Thread.currentThread().getName() + " put  "+ (Integer)x);
} finally {
lock.unlock();    // 释放锁
}
}

public Object take() throws InterruptedException {
lock.lock();    //获取锁
try {
// 如果“缓冲为空”,则等待;直到“缓冲”不为空,才将x从缓冲中取出。
while (count == 0)
notEmpty.await();
// 将x从缓冲中取出
Object x = items[takeptr];
// 将“take统计数takeptr+1”;如果“缓冲为空”,则设takeptr为0。
if (++takeptr == items.length) takeptr = 0;
// 将“缓冲”数量-1
--count;
// 唤醒put线程,因为put线程通过notFull.await()等待
notFull.signal();

// 打印取出的数据
System.out.println(Thread.currentThread().getName() + " take "+ (Integer)x);
return x;
} finally {
lock.unlock();    // 释放锁
}
}
}

public class ConditionTest2 {
private static BoundedBuffer bb = new BoundedBuffer();

public static void main(String[] args) {
// 启动10个“写线程”,向BoundedBuffer中不断的写数据(写入0-9);
// 启动10个“读线程”,从BoundedBuffer中不断的读数据。
for (int i=0; i<10; i++) {
new PutThread("p"+i, i).start();
new TakeThread("t"+i).start();
}
}

static class PutThread extends Thread {
private int num;
public PutThread(String name, int num) {
super(name);
this.num = num;
}
public void run() {
try {
Thread.sleep(1);    // 线程休眠1ms
bb.put(num);        // 向BoundedBuffer中写入数据
} catch (InterruptedException e) {
}
}
}

static class TakeThread extends Thread {
public TakeThread(String name) {
super(name);
}
public void run() {
try {
Thread.sleep(10);                    // 线程休眠1ms
Integer num = (Integer)bb.take();    // 从BoundedBuffer中取出数据
} catch (InterruptedException e) {
}
}
}
}


Condition更强大的地方在于:能够更加精细的控制多线程的休眠与唤醒。对于同一个锁,我们可以创建多个Condition,在不同的情况下使用不同的Condition。

*******************************未完待续***********************************

该文为本人学习的笔记,方便以后自己查阅。参考网上各大帖子,取其精华整合自己的理解而成。如有不对的地方,请多多指正!自勉!共勉!

************************************************************************
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: