您的位置:首页 > 其它

CompletionService 和ExecutorService的区别和用法

2016-12-29 09:28 387 查看
Java SE5的Java.util.concurrent包中的执行器(Executor)将为你管理Thread对象,从而简化了并发编程。Executor在客户端和执行任务之间提供了一个间接层,Executor代替客户端执行任务。Executor允许你管理异步任务的执行,而无须显式地管理线程的生命周期。Executor在Java SE5/6中时启动任务的优选方法。Executor引入了一些功能类来管理和使用线程Thread,其中包括线程池,Executor,Executors,ExecutorService,CompletionService,Future,Callable等



创建线程池

Executors类,提供了一系列工厂方法用于创先线程池,返回的线程池都实现了ExecutorService接口。

public static ExecutorService newFixedThreadPool(int nThreads)

创建固定数目线程的线程池。

public static ExecutorService newCachedThreadPool()

创建一个可缓存的线程池,调用execute 将重用以前构造的线程(如果线程可用)。如果现有线程没有可用的,则创建一个新线程并添加到池中。终止并从缓存中移除那些已有 60 秒钟未被使用的线程。

public static ExecutorService newSingleThreadExecutor()

创建一个单线程化的Executor。

public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize)

创建一个支持定时及周期性的任务执行的线程池,多数情况下可用来替代Timer类。

见类图,接口Executor只有一个方法execute,接口ExecutorService扩展了Executor并添加了一些生命周期管理的方法,如shutdown、submit等。一个Executor的生命周期有三种状态,运行 ,关闭 ,终止。

Callable,Future用于返回结果

Future<V>代表一个异步执行的操作,通过get()方法可以获得操作的结果,如果异步操作还没有完成,则,get()会使当前线程阻塞。FutureTask<V>实现了Future<V>和Runable<V>。Callable代表一个有返回值得操作。

实例:用ExecutorService 实现对一个大数组并行求和

[java] view plain copy print?





package executor;

import java.util.*;

import java.util.concurrent.*;

/*

* 并行计算求和.

* 本例中,把一个整数数组的求和分解到每个线程中,每个线程求该数值的部分和,

* 然后主程序把各个和再次求和就能得到最后的数字。从这个架构上跟mapreduce有点神似。

*

*/

public class ExecutorServiceParalelSumdemo {

private int coreCpuNum;

private ExecutorService executor;

/*

* save the result of each thread's sum calculation

*

*/

private List<FutureTask<Long>> tasks = new ArrayList<FutureTask<Long>>();

public ExecutorServiceParalelSumdemo(){

coreCpuNum = Runtime.getRuntime().availableProcessors();

System.out.println("this host has "+coreCpuNum+ " CPU(s)");

//for before Java 8.0

//executor = Executors.newFixedThreadPool(coreCpuNum);

//this CPU parallelism API is Java8 or later ONLY

executor = Executors.newWorkStealingPool(coreCpuNum);

}

/*

* thread main body

*/

class CalculatorTask implements Callable<Long>{

int nums[];

int start;

int end;

public CalculatorTask(final int nums[],int start,int end){

this.nums = nums;

this.start = start;

this.end = end;

}

@Override

public Long call() throws Exception {

long sum =0;

for(int i=start;i<end;i++){

sum += nums[i];

}

return sum;

}

}

private long getFinalSum(){

long sum = 0;

System.out.println(tasks.size() + " future tasks in pool");

for(int i=0;i<tasks.size();i++){

try {

/*

* If this future's thread not return its result,

* get() will block here. So perf issue introduced.

* we can use CompletionService to solve this potential issue.

*/

sum += tasks.get(i).get();

} catch (InterruptedException e) {

e.printStackTrace();

} catch (ExecutionException e) {

e.printStackTrace();

}

}

return sum;

}

public long ParallelSum(int[] nums){

int start,end,increment;

// 根据CPU核心个数拆分任务,创建每个thread和对应的 FutureTask,并提交到ExecutorService中。

for(int i=0;i<coreCpuNum;i++) {

increment = (nums.length/coreCpuNum)+1;

start = i*increment;

end = start+increment;

if(end > nums.length){

end = nums.length;

}

//create thread tasks

CalculatorTask calculator = new CalculatorTask(nums, start, end);

//create each future result per thread task

FutureTask<Long> task = new FutureTask<Long>(calculator);

tasks.add(task);

if(!executor.isShutdown()){

//execute() can't return result

executor.submit(task);

}

}

return getFinalSum();

}

public void close(){

executor.shutdown();

}

}

CompletionService

在上述例子中,getResult()方法的实现过程中,迭代了FutureTask的数组,如果任务还没有完成则当前线程会阻塞,如果我们希望任意任务完成后就把其结果加到result中,而不用依次等待每个任务完成,可以使用CompletionService。

它与ExecutorService最主要的区别在于submit的task不一定是按照加入时的顺序完成的。CompletionService对ExecutorService进行了包装,内部维护一个保存Future对象的BlockingQueue。只有当这个Future对象状态是结束的时候,才会加入到这个Queue中,take()方法其实就是Producer-Consumer中的Consumer。它会从Queue中取出Future对象,如果Queue是空的,就会阻塞在那里,直到有完成的Future对象加入到Queue中。所以,先完成的必定先被取出。这样就减少了不必要的等待时间。

CompletionService版本的求和例子

[java] view plain copy print?





package executor;

import java.util.*;

import java.util.concurrent.*;

public class CompletionServiceDemo {

/*

* 并行计算求和.

* 本例中,把一个整数数组的求和分解到每个线程中,每个线程求该数值的部分和,

* 然后主程序把各个和再次求和就能得到最后的数字。从这个架构上跟mapreduce有点神似。

*

*/

private int coreCpuNum;

private ExecutorService executor;

/*

* CompletionService与ExecutorService最主要的区别在于

*前者submit的task不一定是按照加入时的顺序完成的。CompletionService对ExecutorService进行了包装,

*内部维护一个保存Future对象的BlockingQueue。

*只有当这个Future对象状态是结束的时候,才会加入到这个Queue中,take()方法其实就是Producer-Consumer中的Consumer。

*它会从Queue中取出Future对象,如果Queue是空的,就会阻塞在那里,直到有完成的Future对象加入到Queue中。

*所以,先完成的必定先被取出。这样就减少了不必要的等待时间。

*

*/

/*

* CompletionService has a internal bloking queue to save the result of each

* thread's sum calculation. so List<FutureTask<Long>> tasks appears unnecessary now

*

*/

private CompletionService<Long> mcs;

/*

* save the result of each thread's sum calculation

*

*/

public CompletionServiceDemo(){

coreCpuNum = Runtime.getRuntime().availableProcessors();

System.out.println("this host has "+coreCpuNum+ " CPU(s)");

//for before Java 8.0

//executor = Executors.newFixedThreadPool(coreCpuNum);

//this CPU parallelism API is Java8 or later ONLY

executor = Executors.newWorkStealingPool(coreCpuNum);

mcs=new ExecutorCompletionService<>(executor);

}

/*

* thread main body

*/

class CalculatorTask implements Callable<Long>{

int nums[];

int start;

int end;

public CalculatorTask(final int nums[],int start,int end){

this.nums = nums;

this.start = start;

this.end = end;

}

@Override

public Long call() throws Exception {

long sum =0;

for(int i=start;i<end;i++){

sum += nums[i];

}

return sum;

}

}

private long getFinalSum(){

long sum = 0;

for(int i=0;i<coreCpuNum;i++){

try {

/*

* get one complete result from CompletionServer internal

* blocking queue

*/

sum += mcs.take().get();

} catch (InterruptedException e) {

e.printStackTrace();

} catch (ExecutionException e) {

e.printStackTrace();

}

}

return sum;

}

public long ParallelSum(int[] nums){

int start,end,increment;

// 根据CPU核心个数拆分任务,创建每个thread和对应的 FutureTask,并提交到ExecutorService中。

for(int i=0;i<coreCpuNum;i++) {

increment = (nums.length/coreCpuNum)+1;

start = i*increment;

end = start+increment;

if(end > nums.length){

end = nums.length;

}

//create thread tasks

CalculatorTask mthread = new CalculatorTask(nums, start, end);

if(!executor.isShutdown()){

mcs.submit(mthread);

}

}

return getFinalSum();

}

public void close(){

executor.shutdown();

}

}

测试main方法:

[java] view plain copy print?





package executor;

public class MainTest {

public static void main(String[] args) {

System.out.println("ExcutorServer thread pool demo show");

int[] nums={12890,345678,2345,5678,865,234,3434,454,4656,67678,678,1234,6789};

ExecutorServiceParalelSumdemo mysum=new ExecutorServiceParalelSumdemo();

System.out.println("result per ExecutorServiceParalelSumdemo = "

+mysum.ParallelSum(nums));

System.out.println("CompletionServiceDemo thread pool demo show");

CompletionServiceDemo mcom=new CompletionServiceDemo();

System.out.println("result per CompletionServiceDemo = "

+mcom.ParallelSum(nums));

}

}

输出:

ExcutorServer thread pool demo show

this host has 4 CPU(s)

4 future tasks in pool

result per ExecutorServiceParalelSumdemo = 452613

CompletionServiceDemo thread pool demo show

this host has 4 CPU(s)

result per CompletionServiceDemo = 452613
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: