您的位置:首页 > 其它

IIR滤波器间接设计

2016-12-20 16:36 357 查看

1.模拟滤波器的设计

1.1巴特沃斯滤波器的次数

根据给定的参数设计模拟滤波器,然后进行变数变换,求取数字滤波器的方法,称为滤波器的间接设计。做为数字滤波器的设计基础的模拟滤波器,称之为原型滤波器。这里,我们首先介绍的是最简单最基础的原型滤波器,巴特沃斯低通滤波器。由于IIR滤波器不具有线性相位特性,因此不必考虑相位特性,直接考虑其振幅特性。



在这里,N是滤波器的次数,Ωc是截止频率。从上式的振幅特性可以看出,这个是单调递减的函数,其振幅特性是不存在纹波的。设计的时候,一般需要先计算跟所需要设计参数相符合的次数N。首先,就需要先由阻带频率,计算出阻带衰减



将巴特沃斯低通滤波器的振幅特性,直接带入上式,则有



最后,可以解得次数N为



当然,这里的N只能为正数,因此,若结果为小数,则舍弃小数,向上取整。

1.2巴特沃斯滤波器的传递函数

巴特沃斯低通滤波器的传递函数,可由其振幅特性的分母多项式求得。其分母多项式



根据S解开,可以得到极点。这里,为了方便处理,我们分为两种情况去解这个方程。当N为偶数的时候,



这里,使用了欧拉公式

。同样的,当N为奇数的时候,



同样的,这里也使用了欧拉公式。归纳以上,极点的解为



上式所求得的极点,是在s平面内,在半径为Ωc的圆上等间距的点,其数量为2N个。为了使得其IIR滤波器稳定,那么,只能选取极点在S平面左半平面的点。选定了稳定的极点之后,其模拟滤波器的传递函数就可由下式求得。



1.3巴特沃斯滤波器的实现(C语言)

首先,是次数的计算。次数的计算,我们可以由下式求得。



其对应的C语言程序为

[cpp] view
plain copy

N = Ceil(0.5*( log10 ( pow (10, Stopband_attenuation/10) - 1) /

log10 (Stopband/Cotoff) ));

然后是极点的选择,这里由于涉及到复数的操作,我们就声明一个复数结构体就可以了。最重要的是,极点的计算含有自然指数函数,这点对于计算机来讲,不是太方便,所以,我们将其替换为三角函数,



这样的话,实部与虚部就还可以分开来计算。其代码实现为

[cpp] view
plain copy

typedef struct

{

double Real_part;

double Imag_Part;

} COMPLEX;

COMPLEX poles
;

for(k = 0;k <= ((2*N)-1) ; k++)

{

if(Cotoff*cos((k+dk)*(pi/N)) < 0)

{

poles[count].Real_part = -Cotoff*cos((k+dk)*(pi/N));

  poles[count].Imag_Part= -Cotoff*sin((k+dk)*(pi/N));

count++;

if (count == N) break;

}

}

计算出稳定的极点之后,就可以进行传递函数的计算了。传递的函数的计算,就像下式一样



这里,为了得到模拟滤波器的系数,需要将分母乘开。很显然,这里的极点不一定是整数,或者来说,这里的乘开需要做复数运算。其复数的乘法代码如下,

[cpp] view
plain copy

int Complex_Multiple(COMPLEX a,COMPLEX b,

double *Res_Real,double *Res_Imag)

{

*(Res_Real) = (a.Real_part)*(b.Real_part) - (a.Imag_Part)*(b.Imag_Part);

*(Res_Imag)= (a.Imag_Part)*(b.Real_part) + (a.Real_part)*(b.Imag_Part);

return (int)1;

}

有了乘法代码之后,我们现在简单的情况下,看看其如何计算其滤波器系数。我们做如下假设



这个时候,其传递函数为



将其乘开,其大致的关系就像下图所示一样。



计算的关系一目了然,这样的话,实现就简单多了。高阶的情况下也一样,重复这种计算就可以了。其代码为

[cpp] view
plain copy

Res[0].Real_part = poles[0].Real_part;

Res[0].Imag_Part= poles[0].Imag_Part;

Res[1].Real_part = 1;

Res[1].Imag_Part= 0;

for(count_1 = 0;count_1 < N-1;count_1++)

{

for(count = 0;count <= count_1 + 2;count++)

{

if(0 == count)

 {

Complex_Multiple(Res[count], poles[count_1+1],

&(Res_Save[count].Real_part),

&(Res_Save[count].Imag_Part));

}

else if((count_1 + 2) == count)

{

Res_Save[count].Real_part += Res[count - 1].Real_part;

 Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;

}

 else

 {

Complex_Multiple(Res[count], poles[count_1+1],

&(Res_Save[count].Real_part),

&(Res_Save[count].Imag_Part));

1   Res_Save[count].Real_part += Res[count - 1].Real_part;

   Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;

 }

}

  *(b+N) = *(a+N);

到此,我们就可以得到一个模拟滤波器巴特沃斯低通滤波器了。

2.双1次z变换

2.1双1次z变换的原理

我们为了将模拟滤波器转换为数字滤波器的,可以用的方法很多。这里着重说说双1次z变换。我们希望通过双1次z变换,建立一个s平面到z平面的映射关系,将模拟滤波器转换为数字滤波器。
和之前的例子一样,我们假设有如下模拟滤波器的传递函数。



将其做拉普拉斯逆变换,可得到其时间域内的连续微分方程式,



其中,x(t)表示输入,y(t)表示输出。然后我们需要将其离散化,假设其采样周期是T,用差分方程去近似的替代微分方程,可以得到下面结果



然后使用z变换,再将其化简。可得到如下结果



从而,我们可以得到了s平面到z平面的映射关系,即



由于所有的高阶系统都可以视为一阶系统的并联,所以,这个映射关系在高阶系统中,也是成立的。

然后,将关系式



带入上式,可得



到这里,我们可以就可以得到Ω与ω的对应关系了。



这里的Ω与ω的对应关系很重要。我们最终的目的设计的是数字滤波器,所以,设计时候给的参数必定是数字滤波器的指标。而我们通过间接设计设计IIR滤波器时候,首先是要设计模拟滤波器,再通过变换,得到数字滤波器。那么,我们首先需要做的,就是将数字滤波器的指标,转换为模拟滤波器的指标,基于这个指标去设计模拟滤波器。另外,这里的采样时间T的取值很随意,为了方便计算,一般取1s就可以。

2.2双1次z变换的实现(C语言)

我们设计好的巴特沃斯低通滤波器的传递函数如下所示。



我们将其进行双1次z变换,我们可以得到如下式子



可以看出,我们还是需要将式子乘开,进行合并同类项,这个跟之前说的算法相差不大。其代码为。

[cpp] view
plain copy

for(Count = 0;Count<=N;Count++)

{

 for(Count_Z = 0;Count_Z <= N;Count_Z++)

{

Res[Count_Z] = 0;

Res_Save[Count_Z] = 0;

}

Res_Save [0] = 1;

  for(Count_1 = 0; Count_1 < N-Count;Count_1++)

{

  for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)

{

if(Count_2 == 0) Res[Count_2] += Res_Save[Count_2];

           else if((Count_2 == (Count_1+1))&&(Count_1 != 0))

  Res[Count_2] += -Res_Save[Count_2 - 1];

           else Res[Count_2] += Res_Save[Count_2] - Res_Save[Count_2 - 1];

    for(Count_Z = 0;Count_Z<= N;Count_Z++)

   {

  Res_Save[Count_Z] = Res[Count_Z] ;

  Res[Count_Z] = 0;

   }

}

for(Count_1 = (N-Count); Count_1 < N;Count_1++)

{

for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)

{

if(Count_2 == 0)  Res[Count_2] += Res_Save[Count_2];

else if((Count_2 == (Count_1+1))&&(Count_1 != 0))

        Res[Count_2] += Res_Save[Count_2 - 1];

else

Res[Count_2] += Res_Save[Count_2] + Res_Save[Count_2 - 1];

 }

for(Count_Z = 0;Count_Z<= N;Count_Z++)

{

Res_Save[Count_Z] = Res[Count_Z] ;

Res[Count_Z] = 0;

}

}

for(Count_Z = 0;Count_Z<= N;Count_Z++)

{

*(az+Count_Z) +=  pow(2,N-Count) * (*(as+Count)) *

                  Res_Save[Count_Z];

*(bz+Count_Z) += (*(bs+Count)) * Res_Save[Count_Z];

}

}

到此,我们就已经实现了一个数字滤波器。

3.IIR滤波器的间接设计代码(C语言)

[cpp] view
plain copy

#include <stdio.h>

#include <math.h>

#include <malloc.h>

#include <string.h>

#define pi ((double)3.1415926)

struct DESIGN_SPECIFICATION

{

double Cotoff;

double Stopband;

double Stopband_attenuation;

};

typedef struct

{

double Real_part;

double Imag_Part;

} COMPLEX;

int Ceil(double input)

{

if(input != (int)input) return ((int)input) +1;

else return ((int)input);

}

int Complex_Multiple(COMPLEX a,COMPLEX b

,double *Res_Real,double *Res_Imag)

{

*(Res_Real) = (a.Real_part)*(b.Real_part) - (a.Imag_Part)*(b.Imag_Part);

*(Res_Imag)= (a.Imag_Part)*(b.Real_part) + (a.Real_part)*(b.Imag_Part);

return (int)1;

}

int Buttord(double Cotoff,

double Stopband,

double Stopband_attenuation)

{

int N;

printf("Wc = %lf [rad/sec] \n" ,Cotoff);

printf("Ws = %lf [rad/sec] \n" ,Stopband);

printf("As = %lf [dB] \n" ,Stopband_attenuation);

printf("--------------------------------------------------------\n" );

N = Ceil(0.5*( log10 ( pow (10, Stopband_attenuation/10) - 1) /

log10 (Stopband/Cotoff) ));

return (int)N;

}

int Butter(int N, double Cotoff,

double *a,

double *b)

{

double dk = 0;

int k = 0;

int count = 0,count_1 = 0;

COMPLEX poles
;

COMPLEX Res[N+1],Res_Save[N+1];

if((N%2) == 0) dk = 0.5;

else dk = 0;

for(k = 0;k <= ((2*N)-1) ; k++)

{

if(Cotoff*cos((k+dk)*(pi/N)) < 0)

{

poles[count].Real_part = -Cotoff*cos((k+dk)*(pi/N));

poles[count].Imag_Part= -Cotoff*sin((k+dk)*(pi/N));

count++;

if (count == N) break;

}

}

printf("Pk = \n" );

for(count = 0;count < N ;count++)

{

printf("(%lf) + (%lf i) \n" ,-poles[count].Real_part

,-poles[count].Imag_Part);

}

printf("--------------------------------------------------------\n" );

Res[0].Real_part = poles[0].Real_part;

Res[0].Imag_Part= poles[0].Imag_Part;

Res[1].Real_part = 1;

Res[1].Imag_Part= 0;

for(count_1 = 0;count_1 < N-1;count_1++)

{

for(count = 0;count <= count_1 + 2;count++)

{

if(0 == count)

{

Complex_Multiple(Res[count], poles[count_1+1],

&(Res_Save[count].Real_part),

&(Res_Save[count].Imag_Part));

//printf( "Res_Save : (%lf) + (%lf i) \n" ,Res_Save[0].Real_part,Res_Save[0].Imag_Part);

}

else if((count_1 + 2) == count)

{

Res_Save[count].Real_part += Res[count - 1].Real_part;

Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;

}

else

{

Complex_Multiple(Res[count], poles[count_1+1],

&(Res_Save[count].Real_part),

&(Res_Save[count].Imag_Part));

//printf( "Res : (%lf) + (%lf i) \n" ,Res[count - 1].Real_part,Res[count - 1].Imag_Part);

//printf( "Res_Save : (%lf) + (%lf i) \n" ,Res_Save[count].Real_part,Res_Save[count].Imag_Part);

Res_Save[count].Real_part += Res[count - 1].Real_part;

Res_Save[count].Imag_Part += Res[count - 1].Imag_Part;

//printf( "Res_Save
4000
: (%lf) + (%lf i) \n" ,Res_Save[count].Real_part,Res_Save[count].Imag_Part);

}

//printf("There \n" );

}

for(count = 0;count <= N;count++)

{

Res[count].Real_part = Res_Save[count].Real_part;

Res[count].Imag_Part= Res_Save[count].Imag_Part;

*(a + N - count) = Res[count].Real_part;

}

//printf("There!! \n" );

}

*(b+N) = *(a+N);

//------------------------display---------------------------------//

printf("bs = [" );

for(count = 0;count <= N ;count++)

{

printf("%lf ", *(b+count));

}

printf(" ] \n" );

printf("as = [" );

for(count = 0;count <= N ;count++)

{

printf("%lf ", *(a+count));

}

printf(" ] \n" );

printf("--------------------------------------------------------\n" );

return (int) 1;

}

int Bilinear(int N,

double *as,double *bs,

double *az,double *bz)

{

int Count = 0,Count_1 = 0,Count_2 = 0,Count_Z = 0;

double Res[N+1];

double Res_Save[N+1];

for(Count_Z = 0;Count_Z <= N;Count_Z++)

{

*(az+Count_Z) = 0;

*(bz+Count_Z) = 0;

}

for(Count = 0;Count<=N;Count++)

{

for(Count_Z = 0;Count_Z <= N;Count_Z++)

{

Res[Count_Z] = 0;

Res_Save[Count_Z] = 0;

}

Res_Save [0] = 1;

for(Count_1 = 0; Count_1 < N-Count;Count_1++)

{

for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)

{

if(Count_2 == 0)

{

Res[Count_2] += Res_Save[Count_2];

//printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]);

}

else if((Count_2 == (Count_1+1))&&(Count_1 != 0))

{

Res[Count_2] += -Res_Save[Count_2 - 1];

//printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]);

}

else

{

Res[Count_2] += Res_Save[Count_2] - Res_Save[Count_2 - 1];

//printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]);

}

}

//printf( "Res : ");

for(Count_Z = 0;Count_Z<= N;Count_Z++)

{

Res_Save[Count_Z] = Res[Count_Z] ;

Res[Count_Z] = 0;

//printf( "[%d] %lf " ,Count_Z, Res_Save[Count_Z]);

}

//printf(" \n" );

}

for(Count_1 = (N-Count); Count_1 < N;Count_1++)

{

for(Count_2 = 0; Count_2 <= Count_1+1;Count_2++)

{

if(Count_2 == 0)

{

Res[Count_2] += Res_Save[Count_2];

//printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]);

}

else if((Count_2 == (Count_1+1))&&(Count_1 != 0))

{

Res[Count_2] += Res_Save[Count_2 - 1];

//printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]);

}

else

{

Res[Count_2] += Res_Save[Count_2] + Res_Save[Count_2 - 1];

//printf( "Res[%d] %lf \n" , Count_2 ,Res[Count_2]);

}

}

// printf( "Res : ");

for(Count_Z = 0;Count_Z<= N;Count_Z++)

{

Res_Save[Count_Z] = Res[Count_Z] ;

Res[Count_Z] = 0;

//printf( "[%d] %lf " ,Count_Z, Res_Save[Count_Z]);

}

//printf(" \n" );

}

//printf( "Res : ");

for(Count_Z = 0;Count_Z<= N;Count_Z++)

{

*(az+Count_Z) += pow(2,N-Count) * (*(as+Count)) * Res_Save[Count_Z];

*(bz+Count_Z) += (*(bs+Count)) * Res_Save[Count_Z];

//printf( " %lf " ,*(bz+Count_Z));

}

//printf(" \n" );

}

for(Count_Z = N;Count_Z >= 0;Count_Z--)

{

*(bz+Count_Z) = (*(bz+Count_Z))/(*(az+0));

*(az+Count_Z) = (*(az+Count_Z))/(*(az+0));

}

//------------------------display---------------------------------//

printf("bz = [" );

for(Count_Z= 0;Count_Z <= N ;Count_Z++)

{

printf("%lf ", *(bz+Count_Z));

}

printf(" ] \n" );

printf("az = [" );

for(Count_Z= 0;Count_Z <= N ;Count_Z++)

{

printf("%lf ", *(az+Count_Z));

}

printf(" ] \n" );

printf("--------------------------------------------------------\n" );

return (int) 1;

}

int main(void)

{

int count;

struct DESIGN_SPECIFICATION IIR_Filter;

IIR_Filter.Cotoff = (double)(pi/2); //[red]

IIR_Filter.Stopband = (double)((pi*3)/4); //[red]

IIR_Filter.Stopband_attenuation = 30; //[dB]

int N;

IIR_Filter.Cotoff = 2 * tan((IIR_Filter.Cotoff)/2); //[red/sec]

IIR_Filter.Stopband = 2 * tan((IIR_Filter.Stopband)/2); //[red/sec]

N = Buttord(IIR_Filter.Cotoff,

IIR_Filter.Stopband,

IIR_Filter.Stopband_attenuation);

printf("N: %d \n" ,N);

printf("--------------------------------------------------------\n" );

double as[N+1] , bs[N+1];

Butter(N,

IIR_Filter.Cotoff,

as,

bs);

double az[N+1] , bz[N+1];

Bilinear(N,

as,bs,

az,bz);

printf("Finish \n" );

return (int)0;

}

3.间接设计实现的IIR滤波器的性能

3.1设计指标



3.2程序执行结果

使用上述程序,gcc编译通过,执行结果如下。



其频率响应如下所示。博客地址:http://blog.csdn.net/thnh169/



文章来源:http://blog.csdn.net/zhoufan900428/article/details/9069475
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: