您的位置:首页 > 编程语言 > Java开发

Java中ArrayList和LinkedList的遍历与性能分析

2016-12-04 10:04 801 查看

前言

通过本文你可以了解List的五种遍历方式及各自性能和foreach及Iterator的实现,加深对ArrayList和LinkedList实现的了解。下面来一起看看吧。

一、List的五种遍历方式

1、for each循环

List<Integer> list = new ArrayList<Integer>();
for (Integer j : list) {
// use j
}

2、显示调用集合迭代器

List<Integer> list = new ArrayList<Integer>();
for (Iterator<Integer> iterator = list.iterator(); iterator.hasNext();) {
iterator.next();
}

List<Integer> list = new ArrayList<Integer>();
Iterator<Integer> iterator = list.iterator();
while (iterator.hasNext()) {
iterator.next();
}

3、下标递增循环,终止条件为每次调用size()函数比较判断

List<Integer> list = new ArrayList<Integer>();
for (int j = 0; j < list.size(); j++) {
list.get(j);
}

4、下标递增循环,终止条件为和等于size()的临时变量比较判断

List<Integer> list = new ArrayList<Integer>();int size = list.size();
for (int j = 0; j < size; j++) {
list.get(j);
}

5、下标递减循环

List<Integer> list = new ArrayList<Integer>();
for (int j = list.size() - 1; j >= 0; j--) {
list.get(j);
}

List五种遍历方式的性能测试及对比

以下是性能测试代码,会输出不同数量级大小的ArrayList和LinkedList各种遍历方式所花费的时间。

package cn.trinea.java.test;
import java.text.DecimalFormat;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
/**
* JavaLoopTest
*
* @author www.trinea.cn 2013-10-28
*/
public class JavaLoopTest {
public static void main(String[] args) {
System.out.print("compare loop performance of ArrayList");
loopListCompare(getArrayLists(10000, 100000, 1000000, 9000000));
System.out.print("\r\n\r\ncompare loop performance of LinkedList");
loopListCompare(getLinkedLists(100, 1000, 10000, 100000));
}
public static List<Integer>[] getArrayLists(int... sizeArray) {
List<Integer>[] listArray = new ArrayList[sizeArray.length];
for (int i = 0; i < listArray.length; i++) {
int size = sizeArray[i];
List<Integer> list = new ArrayList<Integer>();
for (int j = 0; j < size; j++) {
list.add(j);
}
listArray[i] = list;
}
return listArray;
}
public static List<Integer>[] getLinkedLists(int... sizeArray) {
List<Integer>[] listArray = new LinkedList[sizeArray.length];
for (int i = 0; i < listArray.length; i++) {
int size = sizeArray[i];
List<Integer> list = new LinkedList<Integer>();
for (int j = 0; j < size; j++) {
list.add(j);
}
listArray[i] = list;
}
return listArray;
}
public static void loopListCompare(List<Integer>... listArray) {
printHeader(listArray);
long startTime, endTime;
// Type 1
for (int i = 0; i < listArray.length; i++) {
List<Integer> list = listArray[i];
startTime = Calendar.getInstance().getTimeInMillis();
for (Integer j : list) {
// use j
}
endTime = Calendar.getInstance().getTimeInMillis();
printCostTime(i, listArray.length, "for each", endTime - startTime);
}
// Type 2
for (int i = 0; i < listArray.length; i++) {
List<Integer> list = listArray[i];
startTime = Calendar.getInstance().getTimeInMillis();
// Iterator<Integer> iterator = list.iterator();
// while(iterator.hasNext()) {
// iterator.next();
// }
for (Iterator<Integer> iterator = list.iterator(); iterator.hasNext();) {
iterator.next();
}
endTime = Calendar.getInstance().getTimeInMillis();
printCostTime(i, listArray.length, "for iterator", endTime - startTime);
}
// Type 3
for (int i = 0; i < listArray.length; i++) {
List<Integer> list = listArray[i];
startTime = Calendar.getInstance().getTimeInMillis();
for (int j = 0; j < list.size(); j++) {
list.get(j);
}
endTime = Calendar.getInstance().getTimeInMillis();
printCostTime(i, listArray.length, "for list.size()", endTime - startTime);
}
// Type 4
for (int i = 0; i < listArray.length; i++) {
List<Integer> list = listArray[i];
startTime = Calendar.getInstance().getTimeInMillis();int size = list.size();
for (int j = 0; j < size; j++) {
list.get(j);
}
endTime = Calendar.getInstance().getTimeInMillis();
printCostTime(i, listArray.length, "for size = list.size()", endTime - startTime);
}
// Type 5
for (int i = 0; i < listArray.length; i++) {
List<Integer> list = listArray[i];
startTime = Calendar.getInstance().getTimeInMillis();
for (int j = list.size() - 1; j >= 0; j--) {
list.get(j);
}
endTime = Calendar.getInstance().getTimeInMillis();
printCostTime(i, listArray.length, "for j--", endTime - startTime);
}
}
static int     FIRST_COLUMN_LENGTH = 23, OTHER_COLUMN_LENGTH = 12, TOTAL_COLUMN_LENGTH = 71;
static final DecimalFormat COMMA_FORMAT  = new DecimalFormat("#,###");
public static void printHeader(List<Integer>... listArray) {
printRowDivider();
for (int i = 0; i < listArray.length; i++) {
if (i == 0) {
StringBuilder sb = new StringBuilder().append("list size");
while (sb.length() < FIRST_COLUMN_LENGTH) {
sb.append(" ");
}
System.out.print(sb);
}
StringBuilder sb = new StringBuilder().append("| ").append(COMMA_FORMAT.format(listArray[i].size()));
while (sb.length() < OTHER_COLUMN_LENGTH) {
sb.append(" ");
}
System.out.print(sb);
}
TOTAL_COLUMN_LENGTH = FIRST_COLUMN_LENGTH + OTHER_COLUMN_LENGTH * listArray.length;
printRowDivider();
}
public static void printRowDivider() {
System.out.println();
StringBuilder sb = new StringBuilder();
while (sb.length() < TOTAL_COLUMN_LENGTH) {
sb.append("-");
}
System.out.println(sb);
}
public static void printCostTime(int i, int size, String caseName, long costTime) {
if (i == 0) {
StringBuilder sb = new StringBuilder().append(caseName);
while (sb.length() < FIRST_COLUMN_LENGTH) {
sb.append(" ");
}
System.out.print(sb);
}
StringBuilder sb = new StringBuilder().append("| ").append(costTime).append(" ms");
while (sb.length() < OTHER_COLUMN_LENGTH) {
sb.append(" ");
}
System.out.print(sb);
if (i == size - 1) {
printRowDivider();
}
}
}

PS:如果运行报异常

in thread “main” java.lang.OutOfMemoryError: Java heap space
,请将
main
函数里面
list size
的大小减小。

其中

getArrayLists
函数会返回不同
size
的ArrayList,
getLinkedLists
函数会返回不同
size
的LinkedList。

loopListCompare
函数会分别用上面的遍历方式1-5去遍历每一个list数组(包含不同大小list)中的list。

print
开头函数为输出辅助函数。

测试环境为Windows7 32位系统 3.2G双核CPU 4G内存,Java 7,Eclipse -Xms512m -Xmx512m

最终测试结果如下:

compare loop performance of ArrayList
-----------------------------------------------------------------------
list size    | 10,000 | 100,000 | 1,000,000 | 10,000,000
-----------------------------------------------------------------------
for each    | 1 ms  | 3 ms  | 14 ms  | 152 ms
-----------------------------------------------------------------------
for iterator   | 0 ms  | 1 ms  | 12 ms  | 114 ms
-----------------------------------------------------------------------
for list.size()  | 1 ms  | 1 ms  | 13 ms  | 128 ms
-----------------------------------------------------------------------
for size = list.size() | 0 ms  | 0 ms  | 6 ms  | 62 ms
-----------------------------------------------------------------------
for j--    | 0 ms  | 1 ms  | 6 ms  | 63 ms
-----------------------------------------------------------------------
compare loop performance of LinkedList
-----------------------------------------------------------------------
list size    | 100  | 1,000  | 10,000 | 100,000
-----------------------------------------------------------------------
for each    | 0 ms  | 1 ms  | 1 ms  | 2 ms
-----------------------------------------------------------------------
for iterator   | 0 ms  | 0 ms  | 0 ms  | 2 ms
-----------------------------------------------------------------------
for list.size()  | 0 ms  | 1 ms  | 73 ms  | 7972 ms
-----------------------------------------------------------------------
for size = list.size() | 0 ms  | 0 ms  | 67 ms  | 8216 ms
-----------------------------------------------------------------------
for j--    | 0 ms  | 1 ms  | 67 ms  | 8277 ms
-----------------------------------------------------------------------

第一张表为ArrayList对比结果,第二张表为LinkedList对比结果。

表横向为同一遍历方式不同大小list遍历的时间消耗,纵向为同一list不同遍历方式遍历的时间消耗。

PS:由于首次遍历List会稍微多耗时一点,

for each
的结果稍微有点偏差,将测试代码中的几个Type顺序调换会发现,
for each
耗时和
for iterator
接近。

遍历方式性能测试结果分析

1、foreach介绍

foreach是Java SE5.0引入的功能很强的循环结构,

for (Integer j : list)
应读作
for each int in list

for (Integer j : list)
实现几乎等价于

Iterator<Integer> iterator = list.iterator();
while(iterator.hasNext()) {
Integer j = iterator.next();
}

foreach代码书写简单,不必关心下标初始值和终止值及越界等,所以不易出错

2、ArrayList遍历方式结果分析

a. 在ArrayList大小为十万之前,五种遍历方式时间消耗几乎一样

b. 在十万以后,第四、五种遍历方式快于前三种,get方式优于Iterator方式,并且

int size = list.size();
for (int j = 0; j < size; j++) {
list.get(j);
}

用临时变量size取代

list.size()
性能更优。我们看看ArrayList中迭代器
Iterator
get
方法的实现

private class Itr implements Iterator<E> {
int cursor;  // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
public boolean hasNext() {
return cursor != size;
}
@SuppressWarnings("unchecked")
public E next() {
checkForComodification();
int i = cursor;
if (i >= size)
throw new NoSuchElementException();
Object[] elementData = ArrayList.this.elementData;
if (i >= elementData.length)
throw new ConcurrentModificationException();
cursor = i + 1;
return (E) elementData[lastRet = i];
}
……
}
public E get(int index) {
rangeCheck(index);
return elementData(index);
}

从中可以看出

get
Iterator
next
函数同样通过直接定位数据获取元素,只是多了几个判断而已。

c. 从上可以看出即便在千万大小的ArrayList中,几种遍历方式相差也不过50ms左右,且在常用的十万左右时间几乎相等,考虑foreach的优点,我们大可选用foreach这种简便方式进行遍历。

3、LinkedList遍历方式结果分析

a. 在LinkedList大小接近一万时,

get
方式和
Iterator
方式就已经差了差不多两个数量级,十万时
Iterator
方式性能已经远胜于get方式。

我们看看LinkedList中迭代器和

get
方法的实现

private class ListItr implements ListIterator<E> {
private Node<E> lastReturned = null;
private Node<E> next;
private int nextIndex;
private int expectedModCount = modCount;
ListItr(int index) {
// assert isPositionIndex(index);
next = (index == size) ? null : node(index);
nextIndex = index;
}
public boolean hasNext() {
return nextIndex < size;
}
public E next() {
checkForComodification();
if (!hasNext())
throw new NoSuchElementException();
lastReturned = next;
next = next.next;
nextIndex++;
return lastReturned.item;
}
……
}
public E get(int index) {
checkElementIndex(index);
return node(index).item;
}
/**
* Returns the (non-null) Node at the specified element index.
*/
Node<E> node(int index) {
// assert isElementIndex(index);
if (index < (size >> 1)) {
Node<E> x = first;
for (int i = 0; i < index; i++)
x = x.next;
return x;
} else {
Node<E> x = last;
for (int i = size - 1; i > index; i--)
x = x.prev;
return x;
}
}

从上面代码中可以看出LinkedList迭代器的

next
函数只是通过next指针快速得到下一个元素并返回。而get方法会从头遍历直到index下标,查找一个元素时间复杂度为哦O(n),遍历的时间复杂度就达到了O(n2)。

所以对于LinkedList的遍历推荐使用foreach,避免使用

get
方式遍历。

4、ArrayList和LinkedList遍历方式结果对比分析

从上面的数量级来看,同样是foreach循环遍历,ArrayList和LinkedList时间差不多,可将本例稍作修改加大

list size
会发现两者基本在一个数量级上。

ArrayList get
函数直接定位获取的方式时间复杂度为O(1),而LinkedList的get函数时间复杂度为O(n)。

再结合考虑空间消耗的话,建议首选ArrayList。对于个别插入删除非常多的可以使用LinkedList。

结论总结

通过上面的分析我们基本可以总结下:

  1. 无论ArrayList还是LinkedList,遍历建议使用foreach,尤其是数据量较大时LinkedList避免使用get遍历。
  2. List使用首选ArrayList。对于个别插入删除非常多的可以使用LinkedList。
  3. 可能在遍历List循环内部需要使用到下标,这时综合考虑下是使用foreach和自增count还是get方式。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者使用Java的时候能有所帮助,如果有疑问大家可以留言交流。

您可能感兴趣的文章:

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息