您的位置:首页 > 其它

欧几里得算法和扩展欧几里得算法

2016-12-01 17:15 351 查看

欧几里得算法

欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。

基本代码实现:

1
int
gcd(
int
a,
int
b)
2
{
3
if
(b==0)
4
return
a;
5
return
6
gcd(b,a%b);
7
}


扩展欧几里得算法

已知整数a、b,扩展欧几里得算法可以在求得a、b的最大公约数的同时,能找到整数x、y(其中一个很可能是负数),使它们满足贝祖等式

。有两个数a,b,对它们进行辗转相除法,可得它们的最大公约数——这是众所周知的。然后,收集辗转相除法中产生的式子,倒回去,可以得到ax+by=gcd(a,b)的整数解。

用类似辗转相除法,求二元一次不定方程47x+30y=1的整数解。

a,b为给定的值,通过gcd求解的方法求47与30的最大公约数(即a,b的最大公约数)

47=30*1+17
30=17*1+13
17=13*1+4
13=4*3+1
gcd(a,b)=gcd(b,a%b)

然后把它们改写成“余数等于”的形式

17=47*1+30*(-1) //式1
13=30*1+17*(-1) //式2
4=17*1+13*(-1) //式3
1=13*1+4*(-3)

然后把它们“倒回去”

1=13*1+4*(-3) //应用式3
1=13*1+[17*1+13*(-1)]*(-3)
1=13*4+17*(-3) //应用式2
1=[30*1+17*(-1)]*4+17*(-3)
1=30*4+17*(-7) //应用式1
1=30*4+[47*1+30*(-1)]*(-7)
1=30*11+47*(-7)

得解x=-7, y=11。

基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。

其实大致意思就是a 和 b 的最大公约数是 gcd(a,b) ,那么,我们一定能够找到这样的 x 和 y ,使得: a*x + b*y = gcd 这是一个不定方程(其实是一种丢番图方程),有多解是一定的,但是只要我们找到一组特殊的解 x0 和 y0 那么,我们就可以用 x0 和 y0 表示出整个不定方程的通解:

x = x0 + (b/gcd)*t

y = y0 – (a/gcd)*t

为什么不是:

x = x0 + b*t

y = y0 – a*t

那是因为:

b/gcd 是 b 的因子, a/gcd 是 a 的因子是吧?那么,由于 t的取值范围是整数,你说 (b/gcd)*t 取到的值多还是 b*t 取到的值多?同理,(a/gcd)*t 取到的值多还是 a*gcd 取到的值多?那肯定又要问了,那为什么不是更小的数,非得是 b/gcd 和a/gcd ?

注意到:我们令 B = b/gcd , A = a、gcd , 那么,A 和 B 一定是互素的吧?这不就证明了 最小的系数就是 A 和 B 了吗?要是实在还有什么不明白的,看看《基础数论》(哈尔滨工业大学出版社),这本书把关于不定方程的通解讲的很清楚

现在,我们知道了一定存在 x 和 y 使得 : a*x + b*y = gcd , 那么,怎么求出这个特解 x 和 y 呢?只需要在欧几里德算法的基础上加点改动就行了。

我们观察到:欧几里德算法停止的状态是: a= gcd , b = 0 ,那么,这是否能给我们求解 x y 提供一种思路呢?因为,这时候,只要 a = gcd 的系数是 1 ,那么只要 b 的系数是 0 或者其他值(无所谓是多少,反正任何数乘以 0 都等于 0 但是a 的系数一定要是 1),这时,我们就会有: a*1 + b*0 = gcd

当然这是最终状态,但是我们是否可以从最终状态反推到最初的状态呢?

假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得 a*x + b*y= gcd ,而我们已经求出了下一个状态:b 和 a%b 的最大公约数,并且求出了一组x1 和y1 使得: b*x1 + (a%b)*y1 = gcd , 那么这两个相邻的状态之间是否存在一种关系呢?

我们知道: a%b = a - (a/b)*b(这里的 “/” 指的是整除,例如 5/2=2 , 1/3=0),那么,我们可以进一步得到:

gcd = b*x1 + (a-(a/b)*b)*y1

= b*x1 + a*y1 – (a/b)*b*y1

= a*y1 + b*(x1 – a/b*y1)

对比之前我们的状态:求一组 x 和 y 使得:a*x + b*y = gcd ,是否发现了什么?

这里:

x = y1

y = x1 – a/b*y1



01
证明:设
a>b。
02
03
  推理1,显然当
b=0,gcd(a,b)=a。此时 x=1,y=0;
//推理1
04
05
  推理2,ab!=0
时
06
07
  设
ax1+by1=gcd(a,b);
08
09
  bx2+(a
mod b)y2=gcd(b,a mod b);
10
11
  根据朴素的欧几里德原理有
gcd(a,b)=gcd(b,a mod b);
12
13
  则:ax1+by1=bx2+(a
mod b)y2;
14
15
  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;
16
17
  根据恒等定理得:x1=y2;
y1=x2-(a/b)*y2;
//推理2
18
19
 
这样我们就得到了求解
x1,y1 的方法:x1,y1 的值基于 x2,y2.
20
21
 
上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
扩展欧几里德的递归代码:

01
#include
<iostream>
02
using
namespace
std;
03
04
int
exgcd(
int
a,
int
b,
int
&
x,
int
&
y){
05
if
(b
== 0){
06
//根据上面的推理1,基本情况
07
x
= 1;
08
y
= 0;
09
return
a;
10
}
11
int
r
= exgcd(b, a%b, x, y);
12
//根据推理2
13
int
t
= y;
14
y
= x - (a/b)*y;
15
x
= t;
16
return
r;
17
}
18
19
int
main()
{
20
int
x,y;
21
exgcd(47,30,x,y);
22
cout
<<
"47x+30y=1
的一个整数解为: x="
<<
x <<
",
y="
<<
y << endl;
23
return
0;
24
}
非递归实现,比上面的看上去要复杂了不少,不熟悉的话直接用上面的就可以:

01
int
exgcd(
int
m,
int
n,
int
&x,
int
&y)
02
{
03
int
x1,y1,x0,y0;
04
x0=1;
y0=0;
05
x1=0;
y1=1;
06
x=0;
y=1;
07
int
r=m%n;
08
int
q=(m-r)/n;
09
while
(r)
10
{
11
x=x0-q*x1;
y=y0-q*y1;
12
x0=x1;
y0=y1;
13
x1=x;
y1=y;
14
m=n;
n=r; r=m%n;
15
q=(m-r)/n;
16
}
17
return
n;
18
}
扩展欧几里德算法的应用

(1)求解不定方程

用扩展欧几里得算法解不定方程ax+by=c;

这个应该比较好理解了,两个可以同乘以k

1
bool
linear_equation(
int
a,
int
b,
int
c,
int
&x,
int
&y)
2
{
3
int
d=exgcd(a,b,x,y);
4
if
(c%d)
5
return
false
;
6
int
k=c/d;
7
x*=k;
y*=k;
//求得的只是其中一组解
8
return
true
;
9
}
(2)求解模线性方程(线性同余方程

同余方程 ax≡b (mod n) (也就是 ax % n = b) 对于未知数 x 有解,当且仅当 gcd(a,n) | b (也就是 b % (gcd(a,n))==0 )。且方程有解时,方程有 gcd(a,n) 个解。

求解方程 ax≡b (mod n) 相当于求解方程 ax+ ny= b, (x, y为整数)

1
在方程
3x ≡ 2 (mod 6) 中, d = gcd(3,6) = 3 ,3 不整除 2,因此方程无解。
2
3
在方程
5x ≡ 2 (mod 6) 中, d = gcd(5,6) = 1,1 整除 2,因此方程在{0,1,2,3,4,5} 中恰有一个解: x=4。
证明略去,直接说算法:

首先看一个简单的例子:

5x=4(mod3)

解得x = 2,5,8,11,14…….

由此可以发现一个规律,就是解的间隔是3.

那么这个解的间隔是怎么决定的呢?

如果可以设法找到第一个解,并且求出解之间的间隔,那么就可以求出模的线性方程的解集了.

我们设解之间的间隔为dx.

那么有

a*x = b(mod n);

a*(x+dx) = b(mod n);

两式相减,得到:

a*dx(mod n)= 0;

也就是说a*dx就是a的倍数,同时也是n的倍数,即a*dx是a 和 n的公倍数.为了求出dx,我们应该求出a 和 n的最小公倍数,此时对应的dx是最小的.

设a 和 n的最大公约数为d,那么a 和 n 的最小公倍数为(a*n)/d.

即a*dx = a*n/d;

所以dx = n/d. (d = gcd(a,n) )

因此解之间的间隔就求出来了.

01
bool
modular_linear_equation(
int
a,
int
b,
int
n)
02
{
03
int
x,y,x0,i;
04
int
d=exgcd(a,n,x,y);
05
if
(b%d)
06
return
false
;
07
x0=x*(b/d)%n;
//特解
08
for
(i=1;i<d;i++)
09
printf
(
"%d\n"
,(x0+i*(n/d))%n);
10
return
true
;
11
}
(3)求解模的逆元;

同余方程ax≡b (mod n),如果 gcd(a,n)== 1,则方程只有唯一解。

在这种情况下,如果 b== 1,同余方程就是 ax=1 (mod n ),gcd(a,n)= 1。

这时称求出的 x 为 a 的对模 n 乘法的逆元。

对于同余方程 ax= 1(mod n ), gcd(a,n)= 1 的求解就是求解方程

ax+ ny= 1,x, y 为整数。这个可用扩展欧几里德算法求出,原同余方程的唯一解就是用扩展欧几里德算法得出的 x 。

扩展欧几里德算法

谁是欧几里德?自己百度去

先介绍什么叫做欧几里德算法

有两个数 a b,现在,我们要求 a b 的最大公约数,怎么求?枚举他们的因子?不现实,当 a b 很大的时候,枚举显得那么的naïve ,那怎么做?

欧几里德有个十分又用的定理: gcd(a, b) = gcd(b , a%b) ,这样,我们就可以在几乎是 log 的时间复杂度里求解出来 a 和 b 的最大公约数了,这就是欧几里德算法,用 C++ 语言描述如下:



由于是用递归写的,所以看起来很简洁,也很好记忆。那么什么是扩展欧几里德呢?

现在我们知道了 a 和 b 的最大公约数是 gcd ,那么,我们一定能够找到这样的 x 和 y ,使得: a*x + b*y = gcd 这是一个不定方程(其实是一种丢番图方程),有多解是一定的,但是只要我们找到一组特殊的解 x0 和 y0 那么,我们就可以用 x0 和 y0 表示出整个不定方程的通解:

x = x0 + (b/gcd)*t

y = y0 – (a/gcd)*t

为什么不是:

x = x0 + b*t

y = y0 – a*t

这个问题也是在今天早上想通的,想通之后忍不住喷了自己一句弱逼。那是因为:

b/gcd 是 b 的因子, a/gcd 是 a 的因子是吧?那么,由于 t的取值范围是整数,你说 (b/gcd)*t 取到的值多还是 b*t 取到的值多?同理,(a/gcd)*t 取到的值多还是 a*gcd 取到的值多?那肯定又要问了,那为什么不是更小的数,非得是 b/gcd 和a/gcd ?

注意到:我们令 B = b/gcd , A = a、gcd , 那么,A 和 B 一定是互素的吧?这不就证明了 最小的系数就是 A 和 B 了吗?要是实在还有什么不明白的,看看《基础数论》(哈尔滨工业大学出版社),这本书把关于不定方程的通解讲的很清楚

现在,我们知道了一定存在 x 和 y 使得 : a*x + b*y = gcd , 那么,怎么求出这个特解 x 和 y 呢?只需要在欧几里德算法的基础上加点改动就行了。

我们观察到:欧几里德算法停止的状态是: a= gcd , b = 0 ,那么,这是否能给我们求解 x y 提供一种思路呢?因为,这时候,只要 a = gcd 的系数是 1 ,那么只要 b 的系数是 0 或者其他值(无所谓是多少,反正任何数乘以 0 都等于 0 但是a 的系数一定要是 1),这时,我们就会有: a*1 + b*0 = gcd

当然这是最终状态,但是我们是否可以从最终状态反推到最初的状态呢?

假设当前我们要处理的是求出 a 和 b的最大公约数,并求出 x 和 y 使得 a*x + b*y= gcd ,而我们已经求出了下一个状态:b 和 a%b 的最大公约数,并且求出了一组x1 和y1 使得: b*x1 + (a%b)*y1 = gcd , 那么这两个相邻的状态之间是否存在一种关系呢?

我们知道: a%b = a - (a/b)*b(这里的 “/” 指的是整除,例如 5/2=2 , 1/3=0),那么,我们可以进一步得到:

gcd = b*x1 + (a-(a/b)*b)*y1

= b*x1 + a*y1 – (a/b)*b*y1

= a*y1 + b*(x1 – a/b*y1)

对比之前我们的状态:求一组 x 和 y 使得:a*x + b*y = gcd ,是否发现了什么?

这里:

x = y1

y = x1 – a/b*y1

以上就是扩展欧几里德算法的全部过程,依然用递归写:



依然很简短,相比欧几里德算法,只是多加了几个语句而已。

这就是理论部分,欧几里德算法部分我们好像只能用来求解最大公约数,但是扩展欧几里德算法就不同了,我们既可以求出最大公约数,还可以顺带求解出使得: a*x + b*y = gcd 的通解 x 和 y
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  数论