您的位置:首页 > 其它

第十一周项目1验证算法—(2)二叉树构造算法的验证

2016-11-25 10:26 351 查看
copyright (c) 2016,烟台大学计算机学院 

 All rights reserved. 

 文件名称:1.cpp 

 作者:孟令康

 完成日期:2016年9月12日 

 版本号:v1.0 

 问题描述:任何n(n≥0)个不同节点的二叉树,都可由它的中序序列和先序序列唯一地确定。

 输入描述:无。

 输出描述:测试结果。
 代码

main.cpp:

#include<stdio.h>
#include"btree.h"
int main()
{
ElemType pre[]="ABDGCEF",in[]="DGBAECF";
BTNode *b1;
b1=CreateBT1(pre,in,7);
printf("b1:");
DispBTNode(b1);
printf("\n");
return 0;

}

btree.h:
#ifndef BTREE_H_INCLUDED
#define BTREE_H_INCLUDED

#define MaxSize 100
typedef char ElemType;
typedef struct node
{
ElemType data; //数据元素
struct node *lchild; //指向左孩子
struct node *rchild; //指向右孩子
} BTNode;
void CreateBTNode(BTNode *&b,char *str); //由str串创建二叉链
BTNode *FindNode(BTNode *b,ElemType x); //返回data域为x的节点指针
BTNode *LchildNode(BTNode *p); //返回*p节点的左孩子节点指针
BTNode *RchildNode(BTNode *p); //返回*p节点的右孩子节点指针
int BTNodeDepth(BTNode *b); //求二叉树b的深度
void DispBTNode(BTNode *b); //以括号表示法输出二叉树
void DestroyBTNode(BTNode *&b); //销毁二叉树
BTNode *CreateBT1(char *pre,char *in,int n);

#endif // BTREE_H_INCLUDED

btree.cpp:
#include <stdio.h>
#include <malloc.h>
#include "btree.h"

void CreateBTNode(BTNode *&b,char *str) //由str串创建二叉链
{
BTNode *St[MaxSize],*p=NULL;
int top=-1,k,j=0;
char ch;
b=NULL; //建立的二叉树初始时为空
ch=str[j];
while (ch!='\0') //str未扫描完时循环
{
switch(ch)
{
case '(':
top++;
St[top]=p;
k=1;
break; //为左节点
case ')':
top--;
break;
case ',':
k=2;
break; //为右节点
default:
p=(BTNode *)malloc(sizeof(BTNode));
p->data=ch;
p->lchild=p->rchild=NULL;
if (b==NULL) //p指向二叉树的根节点
b=p;
else //已建立二叉树根节点
{
switch(k)
{
case 1:
St[top]->lchild=p;
break;
case 2:
St[top]->rchild=p;
break;
}
}
}
j++;
ch=str[j];
}
}
BTNode *FindNode(BTNode *b,ElemType x) //返回data域为x的节点指针
{
BTNode *p;
if (b==NULL)
return NULL;
else if (b->data==x)
return b;
else
{
p=FindNode(b->lchild,x);
if (p!=NULL)
return p;
else
return FindNode(b->rchild,x);
}
}
BTNode *LchildNode(BTNode *p) //返回*p节点的左孩子节点指针
{
return p->lchild;
}
BTNode *RchildNode(BTNode *p) //返回*p节点的右孩子节点指针
{
return p->rchild;
}
int BTNodeDepth(BTNode *b) //求二叉树b的深度
{
int lchilddep,rchilddep;
if (b==NULL)
return(0); //空树的高度为0
else
{
lchilddep=BTNodeDepth(b->lchild); //求左子树的高度为lchilddep
rchilddep=BTNodeDepth(b->rchild); //求右子树的高度为rchilddep
return (lchilddep>rchilddep)? (lchilddep+1):(rchilddep+1);
}
}
void DispBTNode(BTNode *b) //以括号表示法输出二叉树
{
if (b!=NULL)
{
printf("%c",b->data);
if (b->lchild!=NULL || b->rchild!=NULL)
{
printf("(");
DispBTNode(b->lchild);
if (b->rchild!=NULL) printf(",");
DispBTNode(b->rchild);
printf(")");
}
}
}
void DestroyBTNode(BTNode *&b) //销毁二叉树
{
if (b!=NULL)
{
DestroyBTNode(b->lchild);
DestroyBTNode(b->rchild);
free(b);
}
}
BTNode *CreateBT1(char *pre,char *in,int n) /*pre存放先序序列,in存放中序序列,n为二叉树结点个数,
本算法执行后返回构造的二叉链的根结点指针*/
{
BTNode *s;
char *p;
int k;
if (n<=0) return NULL;
s=(BTNode *)malloc(sizeof(BTNode)); //创建二叉树结点*s
s->data=*pre;
for (p=in; p<in+n; p++) //在中序序列中找等于*ppos的位置k
if (*p==*pre) //pre指向根结点
break; //在in中找到后退出循环
k=p-in; //确定根结点在in中的位置
s->lchild=CreateBT1(pre+1,in,k); //递归构造左子树
s->rchild=CreateBT1(pre+k+1,p+1,n-k-1); //递归构造右子树
return s;
}

运行结果:



知识点总结:

                    二叉树构造算法。

学习心得:

                   完成了二叉树构造算法的验证。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: 
相关文章推荐