您的位置:首页 > 其它

非线性最小二乘法之Gauss Newton、L-M、Dog-Leg

2016-10-05 10:44 549 查看

非线性最小二乘法之Gauss Newton、L-M、Dog-Leg

最快下降法

假设hTF′(x)<0,则h是F(x)下降方向,即对于任意足够小的α>0,都满足F(x+αh)<F(x)。

现在讨论F(x)沿着h方向下降快慢:

limα→0F(x)−F(x+αh)α∥h∥=−1∥h∥hTF′(x)=−∥∥F′(x)∥∥cosθ

其中θ为矢量h和F′(x)夹角,当θ=π时,下降最大。

即 hsd=−F′(x),是最快下降方向。

最小二乘问题

通常的最小二乘问题都可以表示为:

F(x)=12∑i=1n(fi(x)2)=12∥f(x)∥2=12f(x)Tf(x)

找到一个x∗使得 x∗=argminxF(x),其中x=[x1x2⋯xm],f(x)=[f1(x)f2(x)⋯fn(x)]。

假设对f(x)第i个分量fi(x)在点xk处Taylor展开,

fi(xk+h)≈fi(xk)+∇fi(xk)Th,i=1,2⋯n

则f(xk+h)≈f(xk)+J(xk)h,其中Jacobin矩阵

J(xk)=⎡⎣⎢⎢⎢⎢⎢∇f1(xk)T∇f2(xk)T⋮∇fn(xk)⎤⎦⎥⎥⎥⎥⎥=⎡⎣⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢∂f1(xk)∂x1∂f2(xk)∂x1⋮∂fn(xk)∂x1∂f1(xk)∂x2∂f2(xk)∂x2⋮∂fn(xk)∂x2⋯⋯⋱⋯∂f1(xk)∂xm∂f2(xk)∂xm⋮∂fn(xk)∂xm⎤⎦⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

通常记fk=f(xk),Jk=J(xk).

∂F(x)∂xj=∑i=1nfi(x)∂fi(x)∂xj

所以F(x)的梯度:

g=F′(x)=J(x)Tf(x)

GaussNewton

选择h使得F(x)在xk附近二阶近似,则

F(xk+h)≈L(h)=12f(xk+h)Tf(xk+h)=12fTkfk+hTJTkfk+12hTJTkJkh=F(xk)+hTJTkfk+12hTJTkJkh

为使F(xk+h)取得极小值,L(h)对h一阶导数∂L(h)∂h=JTkfk+JTkJkh,令L′(h)=0,则(JTkJk)hgn=−JTkfk。

当JTkJk非奇异的时候,hgn=−(JTkJk)−1JTkfk,xk+1=xk+hgn。

由于GaussNewton求解过程中需要对JTJ求逆,所以当JTJ变成奇异的,GaussNewton方法失效。另外当x0离极小点较远时,GaussNewton算法可能会发散。

总结以上,GaussNewton法一般求解步骤:

- step1:根据(JTkJk)hgn=−JTkfk,求解迭代步长hgn;

- step2:xk+1=xk+hgn进行新的迭代;

- step3:若|F(xk+1)−F(xk)|<ϵ,其中ϵ足够小,则认为F(x)以收敛,则退出迭代,否则重复step1;

通常GaussNewton法收敛较快,但是不稳定。而最快下降法稳定,但是收敛较慢。所以接下来我们介绍GaussNewton和最快下降法混合法。

LM阻尼最小二乘法

GaussNewton法是用(JTkJk)h=−JTkfk来确定h,现在假设在JTkJk对角线上元素都加上同一个数u>0,

(JTkJk+uI)h=−JTkfk

这样即使当JTkJk奇异,只要u取得充分大,总能使(JTkJk+uI)正定,则(JTkJk+uI)h=−JTkfk肯定有解。这个解依赖于u,记作hlm。

⎧⎩⎨⎪⎪当u=0当u充分大hlm≈hgn,即为GaussNewton法.uIhlm≈−JTkfk,hlm=−1uJTkfk,即为最快下降法.特别当u→∞,∥hlm∥→0

因此u起着使步长∥hlm∥缩短的或阻尼的作用,此即为阻尼最小二乘法。

那么LM阻尼最小二乘法实际迭代过程中怎样调整u?

假设∥h∥足够小,对f(x+h)一阶近似 f(x+h)≈ι(h)=f(x)+J(x)h

则对F(x+h)二阶近似,

F(x+h)≈L(h)=12f(x+h)Tf(x+h)=12fTf+hTJTf+12hTJTJh=F(x)+hTJTf+12hTJTJh

我们定义一个增益比 ρ=F(x)−F(x+hlm)L(0)−L(hlm)

在实际中,我们选择一阶近似、二阶近似并不是在所有定义域都满足的,而是在[x−ϵ,x+ϵ]作用域内满足这个近似条件。

当ρ较大时,表明F(x+h)的二阶近似L(h)比F(x+h)更加接近于F(x),因此二阶近似比较好,所以可以减小u,采用更大的迭代步长,接近GaussNewton法来更快收敛;

而当ρ较小时,表明采取的二阶近似较差,因此通过增大u,采用更小的步长,接近最快下降法来稳定的迭代。

一种比较好的阻尼系数u随ρ选择策略:

初始值A0=J(x0)TJ(x0),u0=τ∗max{aii},v0=2,算法对τ取值不敏感,τ可以取10−6、10−3或者1都可以。

{if ρ>0elseu:=u∗max{13,1−(2ρ−1)3}u:=u∗vv:=2;v:=2∗v;

总结以上,LM阻尼最小二乘法求解步骤:

- step1:初始化u0=τ∗max{aii},v0=2;

- step2:求解梯度gk=JTkfk,如果∥gk∥≤ϵ1,则退出,否则继续;

- step3:根据(JTkJk+ukI)hlm=−JTkfk,求解迭代步长hlm。若∥hlm∥≤ϵ2(∥x∥+ϵ2),则退出迭代,否则继续;

- step4:xnew=xk+hlm,计算增益比ρ=F(xk)−F(xnew)L(0)−L(hlm)。

如果ρ>0,则xk+1=xnew,uk+1=uk∗max{13,1−(2ρ−1)3} ,vk+1=2;

否则uk+1=uk∗vk,vk+1=2∗vk。重复step2;

对于ϵ1、ϵ2可以选取任意小的值如10−12,只是作为迭代的终止条件,其值得选取对最终的收敛结果影响不大。

Dog-Leg最小二乘法

另外一个GaussNewton和最快下降法混合方法是Dog-Leg法,代替阻尼项而是用trust region。

回到上面讲到最快下降法,下降方向hsd=−F′(xk)=−JTkfk,但是步进多长呢?或者沿着这个方向步进多长能使得F(x)取得最大程度的下降呢?

假设f(x+αhsd)≈f(x)+αJ(x)hsd

F(x+αhsd)≈=12∥f(x)+αJ(x)hsd∥2F(x)+αhTsdJ(x)Tf(x)+12α2∥J(x)hsd∥2

为使得F(x+αhsd)最小,对α求导,

α=−hTsdJ(x)Tf(x)∥J(x)hsd∥2=∥g∥2∥J(x)g∥2

则如果GaussNewton法则xk+1−xk=hgn;如果最快下降法则xk+1−xk=αhsd。

继续trust region是什么呢?

trust region即为在∥h∥≤Δ范围内,F(x+h)=F(x)+hTJTf+12hTJTJh能够较好的近似,因此不管我们在选择GaussNewton还是最快下降法,必须满足∥∥hgn∥∥≤Δ、∥αhsd∥≤Δ,二阶近似才能较好成立。

然后继续,Dog-Leg迭代步长hdl和hgn、αhsd、Δ有什么关系?

⎧⎩⎨⎪⎪⎪⎪⎪⎪⎪⎪if ∥∥hgn∥∥≤Δelse if ∥αhsd∥≥Δelsehdl=hgnhdl=Δ∥hsd∥hsdhdl=αhsd+β(hgn−αhsd)选择β使得∥hdl∥=Δ

hdl和hgn、αhsd、Δ关系示意图:



和阻尼最小二乘法类似,实际中怎样更新trust region半径呢?

继续选择增益比 ρ=F(x)−F(x+hdl)L(0)−L(hdl)

{if ρ>0.75if ρ<0.25Δ:=max{Δ,3∗∥hdl∥}Δ:=Δ/2

总结以上,Dog-Leg最小二乘法求解步骤:

- step1:初始化Δ0。

- step2:求解梯度gk=JTkfk,如果∥gk∥≤ϵ1,则退出,否则继续。如果∥f(xk)∥≤ϵ3,则退出,否则继续。

- step3:如果trust region半径Δk≤ϵ2(∥xk∥+ϵ2),则退出迭代;否则继续;

- step4:分别根据GaussNewton法和最快下降法计算hgn和hsd,然后计算最快下降法的迭代步长α=∥g∥2∥J(x)g∥2。

- step5:根据hgn、hsd和trust region半径Δk,来计算Dog-Leg步进值hdl。若∥hdl∥≤ϵ2(∥xk∥+ϵ2),则退出迭代;否则继续。

- step6:xnew=xk+hdl,计算增益比ρ=F(xk)−F(xnew)L(0)−L(hdl)。

⎧⎩⎨if ρ>0if ρ>0.75elseif ρ<0.25xk+1=xnew;Δk+1=max{Δk,3∗∥hdl∥};Δk+1=Δk/2;

重复step2。

对于ϵ1、ϵ2、ϵ3可以选取任意小的值如10−12,只是作为迭代的终止条件,其值得选取对最终的收敛结果影响不大。

举例:

拟合f(x)=Asin(Bx)+Ccos(Dx),假设4个参数已知A=5、B=1、C=10、D=2,构造100个随机数作为x的采样值,然后计算f(x)再在上面加一个随机扰动量作为观测值。然后,利用输入与输出,来反推四个参数。

Gauss Newton代码:

double func(const VectorXd& input, const VectorXd& output, const VectorXd& params, double objIndex)
{
// obj = A * sin(Bx) + C * cos(D*x) - F
double x1 = params(0);
double x2 = params(1);
double x3 = params(2);
double x4 = params(3);

double t = input(objIndex);
double f = output(objIndex);

return x1 * sin(x2 * t) + x3 * cos( x4 * t) - f;
}

//return vector make up of func() element.
VectorXd objF(const VectorXd& input, const VectorXd& output, const VectorXd& params)
{
VectorXd obj(input.rows());
for(int i = 0; i < input.rows(); i++)
obj(i) = func(input, output, params, i);

return obj;
}

//F = (f ^t * f)/2
double Func(const VectorXd& obj)
{
return obj.squaredNorm()/2;
}

double Deriv(const VectorXd& input, const VectorXd& output, int objIndex, const VectorXd& params,
int paraIndex)
{
VectorXd para1 = params;
VectorXd para2 = params;

para1(paraIndex) -= DERIV_STEP;
para2(paraIndex) += DERIV_STEP;

double obj1 = func(input, output, para1, objIndex);
double obj2 = func(input, output, para2, objIndex);

return (obj2 - obj1) / (2 * DERIV_STEP);
}

MatrixXd Jacobin(const VectorXd& input, const VectorXd& output, const VectorXd& params)
{
int rowNum = input.rows();
int colNum = params.rows();

MatrixXd Jac(rowNum, colNum);

for (int i = 0; i < rowNum; i++)
{
for (int j = 0; j < colNum; j++)
{
Jac(i,j) = Deriv(input, output, i, params, j);
}
}
return Jac;
}

void gaussNewton(const VectorXd& input, const VectorXd& output, VectorXd& params)
{
int errNum = input.rows();      //error  num
int paraNum = params.rows();    //parameter  num

VectorXd obj(errNum);

double last_sum = 0;

int iterCnt = 0;
while (iterCnt < MAX_ITER)
{
obj = objF(input, output, params);

double sum = 0;
sum = Func(obj);

cout << "Iterator index: " << iterCnt << endl;
cout << "parameter: " << endl << params << endl;
cout << "error sum: " << endl << sum << endl << endl;

if (fabs(sum - last_sum) <= 1e-12)
break;
last_sum = sum;

MatrixXd Jac = Jacobin(input, output, params);
VectorXd delta(paraNum);
delta = (Jac.transpose() * Jac).inverse() * Jac.transpose() * obj;

params -= delta;
iterCnt++;
}
}


LM代码:

double maxMatrixDiagonale(const MatrixXd& Hessian)
{
int max = 0;
for(int i = 0; i < Hessian.rows(); i++)
{
if(Hessian(i,i) > max)
max = Hessian(i,i);
}

return max;
}

//L(h) = F(x) + h^t*J^t*f + h^t*J^t*J*h/2
//deltaL = h^t * (u * h - g)/2
double linerDeltaL(const VectorXd& step, const VectorXd& gradient, const double u)
{
double L = step.transpose() * (u * step - gradient);
return L/2;
}

void levenMar(const VectorXd& input, const VectorXd& output, VectorXd& params)
{
int errNum = input.rows();      //error num
int paraNum = params.rows();    //parameter num

//initial parameter
VectorXd obj = objF(input,output,params);
MatrixXd Jac = Jacobin(input, output, params);  //jacobin
MatrixXd A = Jac.transpose() * Jac;             //Hessian
VectorXd gradient = Jac.transpose() * obj;      //gradient

//initial parameter tao v epsilon1 epsilon2
double tao = 1e-3;
long long v = 2;
double eps1 = 1e-12, eps2 = 1e-12;
double u = tao * maxMatrixDiagonale(A);
bool found = gradient.norm() <= eps1;
if(found) return;

double last_sum = 0;
int iterCnt = 0;

while (iterCnt < MAX_ITER)
{
VectorXd obj = objF(input,output,params);

MatrixXd Jac = Jacobin(input, output, params);  //jacobin
MatrixXd A = Jac.transpose() * Jac;             //Hessian
VectorXd gradient = Jac.transpose() * obj;      //gradient

if( gradient.norm() <= eps1 )
{
cout << "stop g(x) = 0 for a local minimizer optimizer." << endl;
break;
}

cout << "A: " << endl << A << endl;

VectorXd step = (A + u * MatrixXd::Identity(paraNum, paraNum)).inverse() * gradient; //negtive Hlm.

cout << "step: " << endl << step << endl;

if( step.norm() <= eps2*(params.norm() + eps2) )
{
cout << "stop because change in x is small" << endl;
break;
}

VectorXd paramsNew(params.rows());
paramsNew = params - step; //h_lm = -step;

//compute f(x)
obj = objF(input,output,params);

//compute f(x_new)
VectorXd obj_new = objF(input,output,paramsNew);

double deltaF = Func(obj) - Func(obj_new);
double deltaL = linerDeltaL(-1 * step, gradient, u);

double roi = deltaF / deltaL;
cout << "roi is : " << roi << endl;
if(roi > 0)
{
params = paramsNew;
u *= max(1.0/3.0, 1-pow(2*roi-1, 3));
v = 2;
}
else
{
u = u * v;
v = v * 2;
}

cout << "u = " << u << " v = " << v << endl;

iterCnt++;
cout << "Iterator " << iterCnt << " times, result is :" << endl << endl;
}
}


Dog-Leg代码:

void dogLeg(const VectorXd& input, const VectorXd& output, VectorXd& params)
{
int errNum = input.rows();      //error num
int paraNum = params.rows();    //parameter num

VectorXd obj = objF(input, output, params);
MatrixXd Jac = Jacobin(input, output, params);  //jacobin
VectorXd gradient = Jac.transpose() * obj;      //gradient

//initial parameter tao v epsilon1 epsilon2
double eps1 = 1e-12, eps2 = 1e-12, eps3 = 1e-12;
double radius = 1.0;

bool found  = obj.norm() <= eps3 || gradient.norm() <= eps1;
if(found) return;

double last_sum = 0;
int iterCnt = 0;
while(iterCnt < MAX_ITER)
{
VectorXd obj = objF(input, output, params);
MatrixXd Jac = Jacobin(input, output, params);  //jacobin
VectorXd gradient = Jac.transpose() * obj;      //gradient

if( gradient.norm() <= eps1 )
{
cout << "stop F'(x) = g(x) = 0 for a global minimizer optimizer." << endl;
break;
}
if(obj.norm() <= eps3)
{
cout << "stop f(x) = 0 for f(x) is so small";
break;
}

//compute how far go along stepest descent direction.
double alpha = gradient.squaredNorm() / (Jac * gradient).squaredNorm();
//compute gauss newton step and stepest descent step.
VectorXd stepest_descent = -alpha * gradient;
VectorXd gauss_newton = (Jac.transpose() * Jac).inverse() * Jac.transpose() * obj * (-1);

double beta = 0;

//compute dog-leg step.
VectorXd dog_leg(params.rows());
if(gauss_newton.norm() <= radius)
dog_leg = gauss_newton;
else if(alpha * stepest_descent.norm() >= radius)
dog_leg = (radius / stepest_descent.norm()) * stepest_descent;
else
{
VectorXd a = alpha * stepest_descent;
VectorXd b = gauss_newton;
double c = a.transpose() * (b - a);
beta = (sqrt(c*c + (b-a).squaredNorm()*(radius*radius-a.squaredNorm()))-c)
/(b-a).squaredNorm();

dog_leg = alpha * stepest_descent + beta * (gauss_newton - alpha * stepest_descent);

}

cout << "dog-leg: " << endl << dog_leg << endl;

if(dog_leg.norm() <= eps2 *(params.norm() + eps2))
{
cout << "stop because change in x is small" << endl;
break;
}

VectorXd new_params(params.rows());
new_params = params + dog_leg;

cout << "new parameter is: " << endl << new_params << endl;

//compute f(x)
obj = objF(input,output,params);
//compute f(x_new)
VectorXd obj_new = objF(input,output,new_params);

//compute delta F = F(x) - F(x_new)
double deltaF = Func(obj) - Func(obj_new);

//compute delat L =L(0)-L(dog_leg)
double deltaL = 0;
if(gauss_newton.norm() <= radius)
deltaL = Func(obj);
else if(alpha * stepest_descent.norm() >= radius)
deltaL = radius*(2*alpha*gradient.norm() - radius)/(2.0*alpha);
else
{
VectorXd a = alpha * stepest_descent;
VectorXd b = gauss_newton;
double c = a.transpose() * (b - a);
beta = (sqrt(c*c + (b-a).squaredNorm()*(radius*radius-a.squaredNorm()))-c)
/(b-a).squaredNorm();

deltaL = alpha*(1-beta)*(1-beta)*gradient.squaredNorm()/2.0 + beta*(2.0-beta)*Func(obj);

}

double roi = deltaF / deltaL;
if(roi > 0)
{
params = new_params;
}
if(roi > 0.75)
{
radius = max(radius, 3.0 * dog_leg.norm());
}
else if(roi < 0.25)
{
radius = radius / 2.0;
if(radius <= eps2*(params.norm()+eps2))
{
cout << "trust region radius is too small." << endl;
break;
}
}

cout << "roi: " << roi << " dog-leg norm: " << dog_leg.norm() << endl;
cout << "radius: " << radius << endl;

iterCnt++;
cout << "Iterator " << iterCnt << " times" << endl << endl;
}
}


main()

#include <eigen3/Eigen/Dense>
#include <eigen3/Eigen/Sparse>
#include <iostream>
#include <iomanip>
#include <math.h>

using namespace std;
using namespace Eigen;

const double DERIV_STEP = 1e-5;
const int MAX_ITER = 100;

#define max(a,b) (((a)>(b))?(a):(b))

int main(int argc, char* argv[])
{
// obj = A * sin(Bx) + C * cos(D*x) - F
//there are 4 parameter: A, B, C, D.
int num_params = 4;

//generate random data using these parameter
int total_data = 100;

VectorXd input(total_data);
VectorXd output(total_data);

double A = 5, B= 1, C = 10, D = 2;
//load observation data
for (int i = 0; i < total_data; i++)
{
//generate a random variable [-10 10]
double x = 20.0 * ((random() % 1000) / 1000.0) - 10.0;
double deltaY = 2.0 * (random() % 1000) /1000.0;
double y = A*sin(B*x)+C*cos(D*x) + deltaY;

input(i) = x;
output(i) = y;
}

//gauss the parameters
VectorXd params_gaussNewton(num_params);
//init gauss
params_gaussNewton << 1.6, 1.4, 6.2, 1.7;

VectorXd params_levenMar = params_gaussNewton;
VectorXd params_dogLeg   = params_gaussNewton;

gaussNewton(input, output, params_gaussNewton);
levenMar(input, output, params_levenMar);
dogLeg(input, output, params_dogLeg);

cout << "gauss newton parameter: " << endl << params_gaussNewton << endl << endl << endl;
cout << "Levenberg-Marquardt parameter: " << endl << params_levenMar << endl << endl << endl;
cout << "dog-leg parameter: " << endl << params_dogLeg << endl << endl << endl;
}




通常对于GaussNewton、LM、Dog-Leg,如果初始化的参数离真实值较近时,这三种方法都能收敛到真实值,而像例子中初始化参数[1.6,1.4,6.2,1.7]T与真实参数[5,1,10,2]T差距较大时,最后收敛的结果与真实值有一定的偏差。因为最小二乘法依赖于初始化参数,最后收敛的只能保证是一个极值点,但是不能保证是全局最优点,图中可以看到LM、Dog-Leg收敛的结果明显优于GaussNewton。



三种方法收敛过程中F值变化,可以看到LM、Dog-Leg收敛的结果明显优于GaussNewton。GaussNewton收敛过程中出现明显来回振荡,Dog-Leg最为平稳,LM收敛过程中出现三个阶段。



阻尼最小二乘法收敛过程中,F、∥g∥、u的变化,可以看到在前5次迭代过程中,基本上GaussNewton方向占主导,但是F却出现略微增大情况,ρ<0二阶近似较差,导致阻尼系数迅速增大,纠正步进方向为最快下降法方向。



Dog-Leg收敛过程中trust region半径在不断改变,直到最后收敛后趋近于0。可以看到radius随着ρ增大而增大,而当ρ趋近于0时radius也收敛到0。

总结以上:

最小二乘法优化后结果依赖于初始值的选取,LM、Dog-Leg收敛结果明显好于GaussNewton。LM、Dog-Leg通常能够达到同样的收敛精度,综合来看Dog-Leg略优于LM。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息