您的位置:首页 > 理论基础 > 数据结构算法

【第四周项目3-单链表应用(2)】

2016-09-22 11:06 465 查看
问题及代码:

<span style="font-family:SimSun;">/*
* Copyright (c) 2016, 烟台大学计算机与控制工程学院
* All rights reserved.
* 文件名称:Cube007.cpp
* 作 者:刘小楠
* 完成日期:2016年9月22日
*
* 问题描述:已知L1和L2分别指向两个单链表的头结点,且已知其长度分别为m、n,请设计算法将L2连接到L1的后面。
* 输入描述:无
* 输出描述:连接后的链表
*/</span>

linklist.h
#ifndef LINKLIST_H_INCLUDED
#define LINKLIST_H_INCLUDED

typedef int ElemType;
typedef struct LNode //定义单链表结点类型
{
ElemType data;
struct LNode *next; //指向后继结点
} LinkList;
void CreateListF(LinkList *&L,ElemType a[],int n);//头插法建立单链表
void CreateListR(LinkList *&L,ElemType a[],int n);//尾插法建立单链表
void InitList(LinkList *&L); //初始化线性表
void DestroyList(LinkList *&L); //销毁线性表
bool ListEmpty(LinkList *L); //判断线性表是否为空
int ListLength(LinkList *L); //求线性表长度
void DispList(LinkList *L); //输出线性表
bool GetElem(LinkList *L,int i,ElemType &e); //求线性表某个数据元素值
int LocateElem(LinkList *L,ElemType e); //按元素值查找
bool ListInsert(LinkList *&L,int i,ElemType e); //插入数据元素
bool ListDelete(LinkList *&L,int i,ElemType &e); //删除数据元素

#endif // LINKLIST_H_INCLUDED

linklist.cpp

#include <stdio.h>
#include <malloc.h>
#include "linklist.h"

void CreateListF(LinkList *&L,ElemType a[],int n)//头插法建立单链表
{
LinkList *s;
int i;
L=(LinkList *)malloc(sizeof(LinkList)); //创建头结点
L->next=NULL;
for (i=0; i<n; i++)
{
s=(LinkList *)malloc(sizeof(LinkList));//创建新结点
s->data=a[i];
s->next=L->next; //将*s插在原开始结点之前,头结点之后
L->next=s;
}
}

void CreateListR(LinkList *&L,ElemType a[],int n)//尾插法建立单链表
{
LinkList *s,*r;
int i;
L=(LinkList *)malloc(sizeof(LinkList)); //创建头结点
L->next=NULL;
r=L; //r始终指向终端结点,开始时指向头结点
for (i=0; i<n; i++)
{
s=(LinkList *)malloc(sizeof(LinkList));//创建新结点
s->data=a[i];
r->next=s; //将*s插入*r之后
r=s;
}
r->next=NULL; //终端结点next域置为NULL
}

void InitList(LinkList *&L)
{
L=(LinkList *)malloc(sizeof(LinkList)); //创建头结点
L->next=NULL;
}
void DestroyList(LinkList *&L)
{
LinkList *p=L,*q=p->next;
while (q!=NULL)
{
free(p);
p=q;
q=p->next;
}
free(p); //此时q为NULL,p指向尾结点,释放它
}
bool ListEmpty(LinkList *L)
{
return(L->next==NULL);
}
int ListLength(LinkList *L)
{
LinkList *p=L;
int i=0;
while (p->next!=NULL)
{
i++;
p=p->next;
}
return(i);
}
void DispList(LinkList *L)
{
LinkList *p=L->next;
while (p!=NULL)
{
printf("%d ",p->data);
p=p->next;
}
printf("\n");
}
bool GetElem(LinkList *L,int i,ElemType &e)
{
int j=0;
LinkList *p=L;
while (j<i && p!=NULL)
{
j++;
p=p->next;
}
if (p==NULL) //不存在第i个数据结点
return false;
else //存在第i个数据结点
{
e=p->data;
return true;
}
}
int LocateElem(LinkList *L,ElemType e)
{
LinkList *p=L->next;
int n=1;
while (p!=NULL && p->data!=e)
{
p=p->next;
n++;
}
if (p==NULL)
return(0);
else
return(n);
}
bool ListInsert(LinkList *&L,int i,ElemType e)
{
int j=0;
LinkList *p=L,*s;
while (j<i-1 && p!=NULL) //查找第i-1个结点
{
j++;
p=p->next;
}
if (p==NULL) //未找到位序为i-1的结点
return false;
else //找到位序为i-1的结点*p
{
s=(LinkList *)malloc(sizeof(LinkList));//创建新结点*s
s->data=e;
s->next=p->next; //将*s插入到*p之后
p->next=s;
return true;
}
}
bool ListDelete(LinkList *&L,int i,ElemType &e)
{
int j=0;
LinkList *p=L,*q;
while (j<i-1 && p!=NULL) //查找第i-1个结点
{
j++;
p=p->next;
}
if (p==NULL) //未找到位序为i-1的结点
return false;
else //找到位序为i-1的结点*p
{
q=p->next; //q指向要删除的结点
if (q==NULL)
return false; //若不存在第i个结点,返回false
e=q->data;
p->next=q->next; //从单链表中删除*q结点
free(q); //释放*q结点
return true;
}
}

main.cpp
#include <stdio.h>
#include <malloc.h>
#include "linklist.h"

void Link(LinkList *&L1, LinkList *&L2)
{
LinkList *p = L1;
while(p->next != NULL) //找到L1的尾节点
p = p->next;
p->next = L2->next; //将L2的首个数据节点连接到L1的尾节点后
free(L2); //释放掉已经无用的L2的头节点
}

int main()
{
LinkList *A, *B;
int i;
ElemType a[]= {1,3,2,9};
ElemType b[]= {0,4,7,6,5,8};
InitList(A);
for(i=3; i>=0; i--)
ListInsert(A, 1, a[i]);
InitList(B);
for(i=5; i>=0; i--)
ListInsert(B, 1, b[i]);
Link(A, B);
printf("A:");
DispList(A);
DestroyList(A);
return 0;
}
运行结果:



知识点总结:

算法复杂度为O(m),只需要由L1的头节点找到其尾节点即可,与L1的长度相关,与L2的长度n无关。
学习心得:

学习要准确掌握知识点并且熟练掌握。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  数据结构