您的位置:首页 > 运维架构

OpenGL — GLFW — 颜色

2016-07-08 00:36 507 查看

OpenGL — GLFW — 颜色

参考教程:https://learnopengl-cn.readthedocs.io/zh/latest/02%20Lighting/01%20Colors/

既然,网络上已经有现成的教程了,我为什么还有在写一遍教程呢?
这个教程不是给大家写的,而是给我自己写的,算是我的学习笔记吧。我将编程序的重点提起出来,并将我的经验和遇到的问题记下来,为日后的我做参考用的。知识会随着时间的流过,而慢慢的被遗忘,当日后有一个项目要用到OpenGL的知识时,那个时候的我可能已经将当初学到的OpenGL忘记的擦不多了,这个时候,我就需要过去的我来帮助我,可以这样理解,跨越时空的两个我在完成一个项目!不错,这就是记笔记的作用。

给模型上颜色,两个步骤:

  1. 编写片段着色器
  2. 在主程序中给片段着色器赋值
  3. 在主主函数中,使用片段着色器

你可能会问,颜色有什么好讲的?我想说:你问对了,真的没有什么好讲的。就是定义一个变量:

glm::vec3 color(1.0f, 0.5f, 0.31f);   // 珊瑚红(Coral)

编写程序步骤

第1步:

程序

先顶点着色器程序,就用个精简版的程序:(顶点着色器(Vertex Shader)文件名为:color.vs

#version 330 core
layout (location = 0) in vec3 position;

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

void main()
{
gl_Position = projection * view * model * vec4(position, 1.0f);
}

解释

layout (location = 0) in vec3 position;

得到CPP程序中是ID是0的数据,将ID为0的数据的物理意义定义为顶点位置

uniform mat4 model;
uniform mat4 view;
uniform mat4 projection;

这些变量是需要在CPP程序中等待赋值的。
归根结底,这三个变量都是4*4的矩阵,都是作用于模型的每一个顶点的。
但是他们代表着不同的物理意义:

model 模型自身的姿态矩阵。姿态旋转平移组成。
view 摄像机姿态矩阵。
projection 透视矩阵。
void main()
{
gl_Position = projection * view * model * vec4(position, 1.0f);
}

gl_PositionGLSL(OpenGL Shading Language)着色语言中的一个内置变量,即输出的顶点位置。

总结:这个顶点着色器的作用就是:更新顶点的位置

第2步:

程序

编写片段着色器:(片段着色器(Fragment shader)文件命名为:color.frag

#version 330 core
out vec4 color;

uniform vec3 objectColor;
uniform vec3 lightColor;

void main()
{
color = vec4(lightColor * objectColor, 1.0f);
}

讲解

out vec4 color;

输出的color变量。

uniform vec3 objectColor;
uniform vec3 lightColor;

这两个值在CPP程序中被赋值,分别表示物体色光源颜色

void main()
{
color = vec4(lightColor * objectColor, 1.0f);
}

将光源颜色与物体颜色相乘,即两个向量相乘,得到最终的颜色。因为定义的color4维向量,objectColorlightColor3维向量。所以这里给color赋值的时候要这样做

color = vec4(vec3, 1.0f);

总结: 这个片段着色器做的事情:更新物体颜色。

第3步

编写CPP程序模板

#include <iostream>
#include <cmath>

// GLEW
#define GLEW_STATIC
#include <GL/glew.h>

// GLFW
#include <GLFW/glfw3.h>

// Other Libs
#include <SOIL.h>
// GLM Mathematics
#include <glm/glm.hpp>
#include <glm/gtc/matrix_transform.hpp>
#include <glm/gtc/type_ptr.hpp>

// Other includes
#include <learnopengl\shader.h>
#include <learnopengl\camera.h>
#include <learnopengl\model.h>

// Function prototypes
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode);
void mouse_callback(GLFWwindow* window, double xpos, double ypos);
void scroll_callback(GLFWwindow* window, double xoffset, double yoffset);
void do_movement();

// Window dimensions
const GLuint WIDTH = 800, HEIGHT = 800;

// Camera
Camera  camera(glm::vec3(0.0f, 0.0f, 3.0f));
GLfloat lastX  =  WIDTH  / 2.0;
GLfloat lastY  =  HEIGHT / 2.0;
bool    keys[1024];

// Deltatime
GLfloat deltaTime = 0.0f;   // Time between current frame and last frame
GLfloat lastFrame = 0.0f;   // Time of last frame

// The MAIN function, from here we start the application and run the game loop
int main()
{
// Init GLFW
glfwInit();
// Set all the required options for GLFW
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
glfwWindowHint(GLFW_RESIZABLE, GL_FALSE);

// Create a GLFWwindow object that we can use for GLFW's functions
GLFWwindow* window = glfwCreateWindow(WIDTH, HEIGHT, "AoboSir OpenGL", nullptr, nullptr);
glfwMakeContextCurrent(window);

// Set the required callback functions
glfwSetKeyCallback(window, key_callback);
glfwSetCursorPosCallback(window, mouse_callback);
glfwSetScrollCallback(window, scroll_callback);

// GLFW Options
glfwSetInputMode(window, GLFW_CURSOR, GLFW_CURSOR_DISABLED);

// Set this to true so GLEW knows to use a modern approach to retrieving function pointers and extensions
glewExperimental = GL_TRUE;
// Initialize GLEW to setup the OpenGL Function pointers
glewInit();

// Define the viewport dimensions
glViewport(0, 0, WIDTH, HEIGHT);

// OpenGL options
glEnable(GL_DEPTH_TEST);

//定义着色器类对象

//定义模型类对象

// Game loop
while (!glfwWindowShouldClose(window))
{
// Calculate deltatime of current frame
GLfloat currentFrame = glfwGetTime();
deltaTime = currentFrame - lastFrame;
lastFrame = currentFrame;

// Check if any events have been activiated (key pressed, mouse moved etc.) and call corresponding response functions
glfwPollEvents();
do_movement();

// Clear the colorbuffer
//glClearColor(0.1f, 0.1f, 0.1f, 1.0f);
glClearColor(0.41f, 0.41f, 0.41f, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

//给着色器进行赋值

//让模型使用这个着色器对象,显示模型

// Swap the screen buffers
glfwSwapBuffers(window);
}

// Terminate GLFW, clearing any resources allocated by GLFW.
glfwTerminate();
return 0;
}

// Is called whenever a key is pressed/released via GLFW
void key_callback(GLFWwindow* window, int key, int scancode, int action, int mode)
{
if (key == GLFW_KEY_ESCAPE && action == GLFW_PRESS)
glfwSetWindowShouldClose(window, GL_TRUE);
if (key >= 0 && key < 1024)
{
if (action == GLFW_PRESS)
keys[key] = true;
else if (action == GLFW_RELEASE)
keys[key] = false;
}
}

void do_movement()
{
// Camera controls
if (keys[GLFW_KEY_W])
camera.ProcessKeyboard(FORWARD, deltaTime);
if (keys[GLFW_KEY_S])
camera.ProcessKeyboard(BACKWARD, deltaTime);
if (keys[GLFW_KEY_A])
camera.ProcessKeyboard(LEFT, deltaTime);
if (keys[GLFW_KEY_D])
camera.ProcessKeyboard(RIGHT, deltaTime);
}

bool firstMouse = true;
void mouse_callback(GLFWwindow* window, double xpos, double ypos)
{
if(glfwGetMouseButton(window,GLFW_MOUSE_BUTTON_LEFT )){
if (firstMouse)
{
lastX = xpos;
lastY = ypos;
firstMouse = false;
}

GLfloat xoffset = xpos - lastX;
GLfloat yoffset = ypos - lastY;  // Reversed since y-coordinates go from bottom to left

lastX = xpos;
lastY = ypos;

camera.ProcessMouseMovement(glm::radians(xoffset), glm::radians(yoffset));
} else {
firstMouse = true;
}
}

void scroll_callback(GLFWwindow* window, double xoffset, double yoffset)
{
camera.ProcessMouseScroll(glm::radians(yoffset) );
}

注意:
1.

glm::radians(angle)
这个函数是将输入的角度转换为弧度。
2.
glfwGetMouseButton(window,GLFW_MOUSE_BUTTON_LEFT )
函数,如果鼠标左键按下,函数会返回非零数据;如果鼠标左键没有被按下,函数会返回0.

第4步

定义着色器对象和模型对象,给着色器对象赋值,并让模型对象使用着色器对象,显示模型。

定义着色器对象和模型对象

//定义着色器类对象
// Build and compile our shader program
Shader lightingShader("shader/color.vs", "shader/color.frag");
Shader lampShader("shader/lamp.vs", "shader/lamp.frag");

//定义模型类对象
Model ourModel("meshes/TexMesh.obj");
Model lampModel("meshes/Light_Bulb.obj");

给着色器进行赋值

//给着色器进行赋值
// Use cooresponding shader when setting uniforms/drawing objects
lightingShader.Use();
GLint objectColorLoc = glGetUniformLocation(lightingShader.Program, "objectColor");
GLint lightColorLoc  = glGetUniformLocation(lightingShader.Program, "lightColor");
glUniform3f(objectColorLoc, 1.0f, 0.5f, 0.31f);
glUniform3f(lightColorLoc,  1.0f, 1.0f, 1.0f);

// Create camera transformations
glm::mat4 view;
view = camera.GetViewMatrix();
glm::mat4 projection = glm::perspective(camera.Zoom, (GLfloat)WIDTH / (GLfloat)HEIGHT, 0.1f, 100.0f);
// Get the uniform locations
GLint modelLoc = glGetUniformLocation(lightingShader.Program, "model");
GLint viewLoc  = glGetUniformLocation(lightingShader.Program,  "view");
GLint projLoc  = glGetUniformLocation(lightingShader.Program,  "projection");
// Pass the matrices to the shader
glUniformMatrix4fv(viewLoc, 1, GL_FALSE, glm::value_ptr(view));
glUniformMatrix4fv(projLoc, 1, GL_FALSE, glm::value_ptr(projection));

// Draw the loaded model
glm::mat4 model;
model = glm::scale(model, glm::vec3(0.2f, 0.2f, 0.2f)); // It's a bit too big for our scene, so scale it down
glUniformMatrix4fv(glGetUniformLocation(lightingShader.Program, "model"), 1, GL_FALSE, glm::value_ptr(model));

让模型使用这个着色器对象,显示模型

//让模型使用这个着色器对象,显示模型
ourModel.Draw(lightingShader);

大功告成,第6步,运行程序


(这其实是以一张倒人脸的背面,你现在看到的是一片珊瑚红色,是因为在我们的这个着色器是最简单的着色器,并且我们没有使用模型的点的法线向量,所以没有阴影的效果。)

我们继续学习下一课。

参考网站:
https://www.geek-share.com/detail/2585587760.html
http://www.glfw.org/docs/latest/group__input.html#gac1473feacb5996c01a7a5a33b5066704
http://learnopengl.com/code_viewer.php?code=model_loading/model_diffuse
下载一个灯泡模型:http://tf3dm.com/3d-model/light-bulb-simple-studio-9032.html

内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: