您的位置:首页 > 其它

RSA加密与SHA签名用法详解

2016-06-29 23:11 423 查看

基础知识

什么是RSA?

答:RSA是一种非对称加密算法,常用来对传输数据进行加密, 配合上数字摘要算法,也可以进行文字签名。

2.RSA加密中padding?

答:padding即填充方式,由于RSA加密算法中要加密的明文是要比模数小的,padding就是通过一些填充方式来限制明文的长度。后面会详细介绍padding的几种模式以及分段加密。

加密和加签有什么区别?

答:加密:公钥放在客户端,并使用公钥对数据进行加密,服务端拿到数据后用私钥进行解密;

加签:私钥放在客户端,并使用私钥对数据进行加签,服务端拿到数据后用公钥进行验签。

前者完全为了加密;后者主要是为了防恶意攻击,防止别人模拟我们的客户端对我们的服务器进行攻击,导致服务器瘫痪。

基本原理

RSA使用“密钥对”对数据进行加密解密,在加密解密前需要先生 存公钥(Public Key)和私钥(Private Key)。

公钥(Public key): 用于加密数据. 用于公开, 一般存放在数据提供方, 例如iOS客户端。

私钥(Private key): 用于解密数据. 必须保密, 私钥泄露会造成安全问题。

iOS中的Security.framework提供了对RSA算法的支持,这种方式需要对密匙对进行处理, 根据public key生成证书, 通过private key生成p12格式的密匙。想想jave直接用字符串进行加密解密简单多了。(⊙o⊙)…

实战

证书生成

RSA加密这块公钥、私钥必不可少的。Apple是不支持直接使用字符串进行加密解密的,推荐使用p12文件。这边教大家去生成在加密中使用到的所有文件,并提供给Java使用。

- 生成模长为1024bit的私钥
openssl genrsa -out private_key.pem 1024

- 生成certification require file
openssl req -new -key private_key.pem -out rsaCertReq.csr

- 生成certification 并指定过期时间
openssl x509 -req -days 3650 -in rsaCertReq.csr -signkey private_key.pem -out rsaCert.crt

- 生成公钥供iOS使用
openssl x509 -outform der -in rsaCert.crt -out public_key.der

- 生成私钥供iOS使用 这边会让你输入密码,后期用到在生成secKeyRef的时候会用到这个密码
openssl pkcs12 -export -out private_key.p12 -inkey private_key.pem -in rsaCert.crt

- 生成pem结尾的公钥供Java使用
openssl rsa -in private_key.pem -out rsa_public_key.pem -pubout

- 生成pem结尾的私钥供Java使用
openssl pkcs8 -topk8 -in private_key.pem -out pkcs8_private_key.pem -nocrypt


生成公钥和私钥的secKeyRef

//根据你的p12文件生成私钥对应的SecKeyRef 这边返回若是nil 请检查你p12文件的生成步骤
- (SecKeyRef)getPrivateKeyRefrenceFromData:(NSData*)p12Data password:(NSString*)password {

SecKeyRef privateKeyRef = NULL;
NSMutableDictionary * options = [[NSMutableDictionary alloc] init];
[options setObject: password forKey:(__bridge id)kSecImportExportPassphrase];
CFArrayRef items = CFArrayCreate(NULL, 0, 0, NULL);
OSStatus securityError = SecPKCS12Import((__bridge CFDataRef) p12Data, (__bridge CFDictionaryRef)options, &items);
if (securityError == noErr && CFArrayGetCount(items) > 0) {
CFDictionaryRef identityDict = CFArrayGetValueAtIndex(items, 0);
SecIdentityRef identityApp = (SecIdentityRef)CFDictionaryGetValue(identityDict, kSecImportItemIdentity);
securityError = SecIdentityCopyPrivateKey(identityApp, &privateKeyRef);
if (securityError != noErr) {
privateKeyRef = NULL;
}
}
CFRelease(items);

return privateKeyRef;
}


//根据你的der文件公钥对应的SecKeyRef
- (SecKeyRef)getPublicKeyRefrenceFromeData:    (NSData*)derData {

SecCertificateRef myCertificate = SecCertificateCreateWithData(kCFAllocatorDefault, (__bridge CFDataRef)derData);
SecPolicyRef myPolicy = SecPolicyCreateBasicX509();
SecTrustRef myTrust;
OSStatus status = SecTrustCreateWithCertificates(myCertificate,myPolicy,&myTrust);
SecTrustResultType trustResult;
if (status == noErr) {
status = SecTrustEvaluate(myTrust, &trustResult);
}
SecKeyRef securityKey = SecTrustCopyPublicKey(myTrust);
CFRelease(myCertificate);
CFRelease(myPolicy);
CFRelease(myTrust);

return securityKey;
}


加密与解密

- (NSData*)rsaEncryptData:(NSData*)data {
SecKeyRef key = [self getPublicKey];
size_t cipherBufferSize = SecKeyGetBlockSize(key);
uint8_t *cipherBuffer = malloc(cipherBufferSize * sizeof(uint8_t));
size_t blockSize = cipherBufferSize - 11;
size_t blockCount = (size_t)ceil([data length] / (double)blockSize);
NSMutableData *encryptedData = [[NSMutableData alloc] init];
for (int i=0; i<blockCount; i++) {
unsigned long bufferSize = MIN(blockSize , [data length] - i * blockSize);
NSData *buffer = [data subdataWithRange:NSMakeRange(i * blockSize, bufferSize)];
OSStatus status = SecKeyEncrypt(key, kSecPaddingPKCS1, (const uint8_t *)[buffer bytes], [buffer length], cipherBuffer, &cipherBufferSize);

if (status != noErr) {
return nil;
}

NSData *encryptedBytes = [[NSData alloc] initWithBytes:(const void *)cipherBuffer length:cipherBufferSize];
[encryptedData appendData:encryptedBytes];
}

if (cipherBuffer){
free(cipherBuffer);
}

return encryptedData;
}


- (NSData*)rsaDecryptData:(NSData*)data {
SecKeyRef key = [self getPrivatKey];

size_t cipherBufferSize = SecKeyGetBlockSize(key);
size_t blockSize = cipherBufferSize;
size_t blockCount = (size_t)ceil([data length] / (double)blockSize);

NSMutableData *decryptedData = [[NSMutableData alloc] init];

for (int i = 0; i < blockCount; i++) {
unsigned long bufferSize = MIN(blockSize , [data length] - i * blockSize);
NSData *buffer = [data subdataWithRange:NSMakeRange(i * blockSize, bufferSize)];

size_t cipherLen = [buffer length];
void *cipher = malloc(cipherLen);
[buffer getBytes:cipher length:cipherLen];
size_t plainLen = SecKeyGetBlockSize(key);
void *plain = malloc(plainLen);

OSStatus status = SecKeyDecrypt(key, kSecPaddingPKCS1, cipher, cipherLen, plain, &plainLen);

if (status != noErr) {
return nil;
}

NSData *decryptedBytes = [[NSData alloc] initWithBytes:(const void *)plain length:plainLen];
[decryptedData appendData:decryptedBytes];
}

return decryptedData;
}


RSA加密中的Padding

RSA_PKCS1_PADDING 填充模式,最常用的模式

要求: 输入:必须 比 RSA 钥模长(modulus) 短至少11个字节, 也就是 RSA_size(rsa) – 11 如果输入的明文过长,必须切割,然后填充。

输出:和modulus一样长

根据这个要求,对于1024bit的密钥,block length = 1024/8 – 11 = 117 字节

RSA_PKCS1_OAEP_PADDING

输入:RSA_size(rsa) – 41

输出:和modulus一样长

RSA_NO_PADDING  不填充

输入:可以和RSA钥模长一样长,如果输入的明文过长,必须切割, 然后填充

输出:和modulus一样长

签名与验证

//对数据进行sha256签名
- (NSData *)rsaSHA256SignData:(NSData *)plainData {
SecKeyRef key = [self getPrivatKey];

size_t signedHashBytesSize = SecKeyGetBlockSize(key);
uint8_t* signedHashBytes = malloc(signedHashBytesSize);
memset(signedHashBytes, 0x0, signedHashBytesSize);

size_t hashBytesSize = CC_SHA256_DIGEST_LENGTH;
uint8_t* hashBytes = malloc(hashBytesSize);
if (!CC_SHA256([plainData bytes], (CC_LONG)[plainData length], hashBytes)) {
return nil;
}

SecKeyRawSign(key,
kSecPaddingPKCS1SHA256,
hashBytes,
hashBytesSize,
signedHashBytes,
&signedHashBytesSize);

NSData* signedHash = [NSData dataWithBytes:signedHashBytes
length:(NSUInteger)signedHashBytesSize];

if (hashBytes)
free(hashBytes);
if (signedHashBytes)
free(signedHashBytes);

return signedHash;
}


//这边对签名的数据进行验证 验签成功,则返回YES
- (BOOL)rsaSHA256VerifyData:(NSData *)plainData     withSignature:(NSData *)signature {
SecKeyRef key = [self getPublicKey];

size_t signedHashBytesSize = SecKeyGetBlockSize(key);
const void* signedHashBytes = [signature bytes];

size_t hashBytesSize = CC_SHA256_DIGEST_LENGTH;
uint8_t* hashBytes = malloc(hashBytesSize);
if (!CC_SHA256([plainData bytes], (CC_LONG)[plainData length], hashBytes)) {
return NO;
}

OSStatus status = SecKeyRawVerify(key,
kSecPaddingPKCS1SHA256,
hashBytes,
hashBytesSize,
signedHashBytes,
signedHashBytesSize);

return status == errSecSuccess;
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  加密 算法 数据 rsa