您的位置:首页 > 其它

uboot向kernel的传参机制——bootm与tags

2016-06-15 17:21 330 查看
http://blog.csdn.net/skyflying2012/article/details/35787971

最近阅读代码学习了uboot boot kernel的过程以及uboot如何传参给kernel,记录下来,与大家共享:

U-boot版本:2014.4

Kernel版本:3.4.55

一 uboot 如何启动 kernel

1 do_bootm

uboot下使用bootm命令启动内核镜像文件uImage,uImage是在zImage头添加了64字节的镜像信息供uboot解析使用,具体这64字节头的内容,我们在分析bootm命令的时候就会一一说到,那直接来看bootm命令。

在common/cmd_bootm.c中

[cpp] view
plain copy







int do_bootm(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])

{

#ifdef CONFIG_NEEDS_MANUAL_RELOC

static int relocated = 0;

if (!relocated) {

int i;

/* relocate boot function table */

for (i = 0; i < ARRAY_SIZE(boot_os); i++)

if (boot_os[i] != NULL)

boot_os[i] += gd->reloc_off;

/* relocate names of sub-command table */

for (i = 0; i < ARRAY_SIZE(cmd_bootm_sub); i++)

cmd_bootm_sub[i].name += gd->reloc_off;

relocated = 1;

}

#endif

/* determine if we have a sub command */

argc--; argv++;

if (argc > 0) {

char *endp;

simple_strtoul(argv[0], &endp, 16);

/* endp pointing to NULL means that argv[0] was just a

* valid number, pass it along to the normal bootm processing

*

* If endp is ':' or '#' assume a FIT identifier so pass

* along for normal processing.

*

* Right now we assume the first arg should never be '-'

*/

if ((*endp != 0) && (*endp != ':') && (*endp != '#'))

return do_bootm_subcommand(cmdtp, flag, argc, argv);

}

return do_bootm_states(cmdtp, flag, argc, argv, BOOTM_STATE_START |

BOOTM_STATE_FINDOS | BOOTM_STATE_FINDOTHER |

BOOTM_STATE_LOADOS |

#if defined(CONFIG_PPC) || defined(CONFIG_MIPS)

BOOTM_STATE_OS_CMDLINE |

#endif

BOOTM_STATE_OS_PREP | BOOTM_STATE_OS_FAKE_GO |

BOOTM_STATE_OS_GO, &images, 1);

}

数组boot_os是bootm最后阶段启动kernel时调用的函数数组,CONFIG_NEEDS_MANUAL_RELOC中的代码含义是将boot_os函数都进行偏移(uboot启动中会将整个code拷贝到靠近sdram顶端的位置执行),

但是boot_os函数在uboot relocate时已经都拷贝了,所以感觉没必要在进行relocate。这个宏因此没有定义,直接走下面。

新版uboot对于boot kernel实现了一个类似状态机的机制,将整个过程分成很多个阶段,uboot将每个阶段称为subcommand,

核心函数是do_bootm_states,需要执行哪个阶段,就在do_bootm_states最后一个参数添加那个宏定义,如: BOOTM_STATE_START

do_bootm_subcommand是按照bootm参数来指定运行某一个阶段,也就是某一个subcommand

对于正常的uImage,bootm加tftp的load地址就可以。

2 do_bootm_states

这样会走到最后函数do_bootm_states,那就来看看核心函数do_bootm_states

[cpp] view
plain copy







static int do_bootm_states(cmd_tbl_t *cmdtp, int flag, int argc,

char * const argv[], int states, bootm_headers_t *images,

int boot_progress)

{

boot_os_fn *boot_fn;

ulong iflag = 0;

int ret = 0, need_boot_fn;

images->state |= states;

/*

* Work through the states and see how far we get. We stop on

* any error.

*/

if (states & BOOTM_STATE_START)

ret = bootm_start(cmdtp, flag, argc, argv);

参数中需要注意bootm_headers_t *images,这个参数用来存储由image头64字节获取到的的基本信息。由do_bootm传来的该参数是images,是一个全局的静态变量。

首先将states存储在images的state中,因为states中有BOOTM_STATE_START,调用bootm_start.

3 第一阶段:bootm_start

[cpp] view
plain copy







static int bootm_start(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[])

{

memset((void *)&images, 0, sizeof(images));

images.verify = getenv_yesno("verify");

boot_start_lmb(&images);

bootstage_mark_name(BOOTSTAGE_ID_BOOTM_START, "bootm_start");

images.state = BOOTM_STATE_START;

return 0;

}

获取verify,bootstage_mark_name标志当前状态为bootm start(bootstage_mark_name可以用于无串口调试,在其中实现LED控制)。

boot_start_lmb暂时还没弄明白,以后再搞清楚。

最后修改images.state为bootm start。

bootm_start主要工作是清空images,标志当前状态为bootm start。

4 第二阶段:bootm_find_os

由bootm_start返回后,do_bootm传了BOOTM_STATE_FINDOS,所以进入函数bootm_find_os

[cpp] view
plain copy







static int bootm_find_os(cmd_tbl_t *cmdtp, int flag, int argc,

char * const argv[])

{

const void *os_hdr;

/* get kernel image header, start address and length */

os_hdr = boot_get_kernel(cmdtp, flag, argc, argv,

&images, &images.os.image_start, &images.os.image_len);

if (images.os.image_len == 0) {

puts("ERROR: can't get kernel image!\n");

return 1;

}

调用boot_get_kernel,函数较长,首先是获取image的load地址,如果bootm有参数,就是img_addr,之后如下:

[cpp] view
plain copy







bootstage_mark(BOOTSTAGE_ID_CHECK_MAGIC);

/* copy from dataflash if needed */

img_addr = genimg_get_image(img_addr);

/* check image type, for FIT images get FIT kernel node */

*os_data = *os_len = 0;

buf = map_sysmem(img_addr, 0);

首先标志当前状态,然后调用genimg_get_image,该函数会检查当前的img_addr是否在sdram中,如果是在flash中,则拷贝到sdram中CONFIG_SYS_LOAD_ADDR处,修改img_addr为该地址。

这里说明我们的image可以在flash中用bootm直接起

map_sysmem为空函数,buf即为img_addr。

[cpp] view
plain copy







switch (genimg_get_format(buf)) {

case IMAGE_FORMAT_LEGACY:

printf("## Booting kernel from Legacy Image at %08lx ...\n",

img_addr);

hdr = image_get_kernel(img_addr, images->verify);

if (!hdr)

return NULL;

bootstage_mark(BOOTSTAGE_ID_CHECK_IMAGETYPE);

/* get os_data and os_len */

switch (image_get_type(hdr)) {

case IH_TYPE_KERNEL:

case IH_TYPE_KERNEL_NOLOAD:

*os_data = image_get_data(hdr);

*os_len = image_get_data_size(hdr);

break;

case IH_TYPE_MULTI:

image_multi_getimg(hdr, 0, os_data, os_len);

break;

[cpp] view
plain copy







case IH_TYPE_STANDALONE:

*os_data = image_get_data(hdr);

*os_len = image_get_data_size(hdr);

break;

default:

printf("Wrong Image Type for %s command\n",

cmdtp->name);

bootstage_error(BOOTSTAGE_ID_CHECK_IMAGETYPE);

return NULL;

}

/*

* copy image header to allow for image overwrites during

* kernel decompression.

*/

memmove(&images->legacy_hdr_os_copy, hdr,

sizeof(image_header_t));

/* save pointer to image header */

images->legacy_hdr_os = hdr;

images->legacy_hdr_valid = 1;

bootstage_mark(BOOTSTAGE_ID_DECOMP_IMAGE);

break;

首先来说明一下image header的格式,在代码中由image_header_t代表,如下:

[cpp] view
plain copy







typedef struct image_header {

__be32 ih_magic; /* Image Header Magic Number */

__be32 ih_hcrc; /* Image Header CRC Checksum */

__be32 ih_time; /* Image Creation Timestamp */

__be32 ih_size; /* Image Data Size */

__be32 ih_load; /* Data Load Address */

__be32 ih_ep; /* Entry Point Address */

__be32 ih_dcrc; /* Image Data CRC Checksum */

uint8_t ih_os; /* Operating System */

uint8_t ih_arch; /* CPU architecture */

uint8_t ih_type; /* Image Type */

uint8_t ih_comp; /* Compression Type */

uint8_t ih_name[IH_NMLEN]; /* Image Name */

} image_header_t;

genimg_get_format检查img header的头4个字节,代表image的类型,有2种,legacy和FIT,这里使用的legacy,头4个字节为0x27051956。

image_get_kernel则会来计算header的crc是否正确,然后获取image的type,根据type来获取os的len和data起始地址。

最后将hdr的数据拷贝到images的legacy_hdr_os_copy,防止kernel image在解压是覆盖掉hdr数据,保存hdr指针到legacy_hdr_os中,置位legacy_hdr_valid。

从boot_get_kernel中返回到bootm_find_os,继续往下:

[cpp] view
plain copy







switch (genimg_get_format(os_hdr)) {

case IMAGE_FORMAT_LEGACY:

images.os.type = image_get_type(os_hdr);

images.os.comp = image_get_comp(os_hdr);

images.os.os = image_get_os(os_hdr);

images.os.end = image_get_image_end(os_hdr);

images.os.load = image_get_load(os_hdr);

根据hdr获取os的type,comp,os,end,load addr。

[cpp] view
plain copy







/* find kernel entry point */

if (images.legacy_hdr_valid) {

images.ep = image_get_ep(&images.legacy_hdr_os_copy);

} else {

puts("Could not find kernel entry point!\n");

return 1;

}

if (images.os.type == IH_TYPE_KERNEL_NOLOAD) {

images.os.load = images.os.image_start;

images.ep += images.os.load;

}

images.os.start = (ulong)os_hdr;

获取os的start。

到这里bootm_find_os就结束了,主要工作是根据image的hdr来做crc,获取一些基本的os信息到images结构体中。

回到do_bootm_states中接下来调用bootm_find_other,

5 第三阶段:bootm_find_other

该函数大体看一下,对于legacy类型的image,获取查询是否有ramdisk,此处我们没有用单独的ramdisk,ramdisk是直接编译到kernel image中的。

回到do_bootm_states中接下来会调用bootm_load_os。

6 第四阶段:bootm_load_os

[cpp] view
plain copy







static int bootm_load_os(bootm_headers_t *images, unsigned long *load_end,

int boot_progress)

{

image_info_t os = images->os;

uint8_t comp = os.comp;

ulong load = os.load;

ulong blob_start = os.start;

ulong blob_end = os.end;

ulong image_start = os.image_start;

ulong image_len = os.image_len;

__maybe_unused uint unc_len = CONFIG_SYS_BOOTM_LEN;

int no_overlap = 0;

void *load_buf, *image_buf;

#if defined(CONFIG_LZMA) || defined(CONFIG_LZO)

int ret;

#endif /* defined(CONFIG_LZMA) || defined(CONFIG_LZO) */

const char *type_name = genimg_get_type_name(os.type);

load_buf = map_sysmem(load, unc_len);

image_buf = map_sysmem(image_start, image_len);

switch (comp) {

case IH_COMP_NONE:

if (load == blob_start || load == image_start) {

printf(" XIP %s ... ", type_name);

no_overlap = 1;

} else {

printf(" Loading %s ... ", type_name);

memmove_wd(load_buf, image_buf, image_len, CHUNKSZ);

}

*load_end = load + image_len;

break;

[cpp] view
plain copy







#ifdef CONFIG_GZIP

case IH_COMP_GZIP:

printf(" Uncompressing %s ... ", type_name);

if (gunzip(load_buf, unc_len, image_buf, &image_len) != 0) {

puts("GUNZIP: uncompress, out-of-mem or overwrite "

"error - must RESET board to recover\n");

if (boot_progress)

bootstage_error(BOOTSTAGE_ID_DECOMP_IMAGE);

return BOOTM_ERR_RESET;

}

*load_end = load + image_len;

break;

#endif /* CONFIG_GZIP */

load_buf是之前find_os是根据hdr获取的load addr,image_buf是find_os获取的image的开始地址(去掉64字节头)。

之后则是根据hdr的comp类型来解压拷贝image到load addr上。

这里就需要注意,kernel选项的压缩格式必须在uboot下打开相应的解压缩支持,或者就不进行压缩

这里还有一点,load addr与image add是否可以重叠,看代码感觉是可以重叠的,还需要实际测试一下。

回到do_bootm_states,接下来根据os从boot_os数组中获取到了相应的os boot func,这里是linux,则是do_bootm_linux。后面代码如下:

[cpp] view
plain copy







/* Call various other states that are not generally used */

if (!ret && (states & BOOTM_STATE_OS_CMDLINE))

ret = boot_fn(BOOTM_STATE_OS_CMDLINE, argc, argv, images);

if (!ret && (states & BOOTM_STATE_OS_BD_T))

ret = boot_fn(BOOTM_STATE_OS_BD_T, argc, argv, images);

if (!ret && (states & BOOTM_STATE_OS_PREP))

ret = boot_fn(BOOTM_STATE_OS_PREP, argc, argv, images);

/* Check for unsupported subcommand. */

if (ret) {

puts("subcommand not supported\n");

return ret;

}

/* Now run the OS! We hope this doesn't return */

if (!ret && (states & BOOTM_STATE_OS_GO))

ret = boot_selected_os(argc, argv, BOOTM_STATE_OS_GO,

images, boot_fn);

这时do_bootm最后的代码,如果正常,boot kernel之后就不应该回来了。states中定义了BOOTM_STATE_OS_PREP(对于mips处理器会使用BOOTM_STATE_OS_CMDLINE),调用do_bootm_linux,如下:

[cpp] view
plain copy







int do_bootm_linux(int flag, int argc, char *argv[], bootm_headers_t *images)

{

/* No need for those on ARM */

if (flag & BOOTM_STATE_OS_BD_T || flag & BOOTM_STATE_OS_CMDLINE)

return -1;

if (flag & BOOTM_STATE_OS_PREP) {

boot_prep_linux(images);

return 0;

}

if (flag & (BOOTM_STATE_OS_GO | BOOTM_STATE_OS_FAKE_GO)) {

boot_jump_linux(images, flag);

return 0;

}

boot_prep_linux(images);

boot_jump_linux(images, flag);

return 0;

}

do_bootm_linux实现跟do_bootm类似,也是根据flag分阶段运行subcommand,这里会调到boot_prep_linux。

7 第五阶段:boot_prep_linux

该函数作用是为启动后的kernel准备参数,这个函数我们在第三部分uboot如何传参给kernel再仔细分析一下

boot_prep_linux完成返回到do_bootm_states后接下来就是最后一步了。执行boot_selected_os调用do_bootm_linux,flag为BOOTM_STATE_OS_GO,则调用boot_jump_linux

8 第六阶段:boot_jump_linux

[cpp] view
plain copy







unsigned long machid = gd->bd->bi_arch_number;

char *s;

void (*kernel_entry)(int zero, int arch, uint params);

unsigned long r2;

int fake = (flag & BOOTM_STATE_OS_FAKE_GO);

kernel_entry = (void (*)(int, int, uint))images->ep;

s = getenv("machid");

if (s) {

strict_strtoul(s, 16, &machid);

printf("Using machid 0x%lx from environment\n", machid);

}

debug("## Transferring control to Linux (at address %08lx)" \

"...\n", (ulong) kernel_entry);

bootstage_mark(BOOTSTAGE_ID_RUN_OS);

announce_and_cleanup(fake);

if (IMAGE_ENABLE_OF_LIBFDT && images->ft_len)

r2 = (unsigned long)images->ft_addr;

else

r2 = gd->bd->bi_boot_params;

if (!fake)

kernel_entry(0, machid, r2);

boot_jump_linux主体函数如上

获取gd->bd->bi_arch_number为machid,如果有env则用env的machid,kernel_entry为之前由hdr获取的ep,也就是内核的入口地址。

fake为0,直接调用kernel_entry,参数1为0,参数2为machid,参数3为bi_boot_params。

这之后就进入了kernel的执行流程启动,就不会再回到uboot

这整个boot过程中bootm_images_t一直作为对image信息的全局存储结构。

三 uboot如何传参给kernel

uboot下的传参机制就直接来分析boot_prep_linux函数就可以了,如下:

[cpp] view
plain copy







static void boot_prep_linux(bootm_headers_t *images)

{

char *commandline = getenv("bootargs");

if (IMAGE_ENABLE_OF_LIBFDT && images->ft_len) {

#ifdef CONFIG_OF_LIBFDT

debug("using: FDT\n");

if (image_setup_linux(images)) {

printf("FDT creation failed! hanging...");

hang();

}

#endif

} else if (BOOTM_ENABLE_TAGS) {

debug("using: ATAGS\n");

setup_start_tag(gd->bd);

if (BOOTM_ENABLE_SERIAL_TAG)

setup_serial_tag(¶ms);

if (BOOTM_ENABLE_CMDLINE_TAG)

setup_commandline_tag(gd->bd, commandline);

if (BOOTM_ENABLE_REVISION_TAG)

setup_revision_tag(¶ms);

if (BOOTM_ENABLE_MEMORY_TAGS)

setup_memory_tags(gd->bd);

if (BOOTM_ENABLE_INITRD_TAG) {

if (images->rd_start && images->rd_end) {

setup_initrd_tag(gd->bd, images->rd_start,

images->rd_end);

}

}

setup_board_tags(¶ms);

setup_end_tag(gd->bd);

} else {

printf("FDT and ATAGS support not compiled in - hanging\n");

hang();

}

do_nonsec_virt_switch();

}

首先获取出环境变量bootargs,这就是要传递给kernel的参数。

在配置文件中定义了CONFIG_CMDLINE_TAG以及CONFIG_SETUP_MEMORY_TAGS,根据arch/arm/include/asm/bootm.h,则会定义BOOTM_ENABLE_TAGS,首先调用setup_start_tag,如下:

[cpp] view
plain copy







static void setup_start_tag (bd_t *bd)

{

params = (struct tag *)bd->bi_boot_params;

params->hdr.tag = ATAG_CORE;

params->hdr.size = tag_size (tag_core);

params->u.core.flags = 0;

params->u.core.pagesize = 0;

params->u.core.rootdev = 0;

params = tag_next (params);

}

params是一个全局静态变量用来存储要传给kernel的参数,这里bd->bi_boot_params的值赋给params,因此bi_boot_params需要进行初始化,从而将params放在一个合理的内存区域。

这里params为struct tag的结构,如下:

[cpp] view
plain copy







struct tag {

struct tag_header hdr;

union {

struct tag_core core;

struct tag_mem32 mem;

struct tag_videotext videotext;

struct tag_ramdisk ramdisk;

struct tag_initrd initrd;

struct tag_serialnr serialnr;

struct tag_revision revision;

struct tag_videolfb videolfb;

struct tag_cmdline cmdline;

/*

* Acorn specific

*/

struct tag_acorn acorn;

/*

* DC21285 specific

*/

struct tag_memclk memclk;

} u;

};

tag包括hdr和各种类型的tag_*,hdr来标志当前的tag是哪种类型的tag。

setup_start_tag是初始化了第一个tag,是tag_core类型的tag。最后调用tag_next跳到第一个tag末尾,为下一个tag做准备。

回到boot_prep_linux,接下来调用setup_commandline_tag,如下:

[cpp] view
plain copy







static void setup_commandline_tag(bd_t *bd, char *commandline)

{

char *p;

if (!commandline)

return;

/* eat leading white space */

for (p = commandline; *p == ' '; p++);

/* skip non-existent command lines so the kernel will still

* use its default command line.

*/

if (*p == '\0')

return;

params->hdr.tag = ATAG_CMDLINE;

params->hdr.size =

(sizeof (struct tag_header) + strlen (p) + 1 + 4) >> 2;

strcpy (params->u.cmdline.cmdline, p);

params = tag_next (params);

}

该函数设置第二个tag的hdr.tag为ATAG_CMDLINE,然后拷贝cmdline到tags的cmdline结构体中,跳到下一个tag。

回到boot_prep_linux,调用setup_memory_tag,如下:

[cpp] view
plain copy







static void setup_memory_tags(bd_t *bd)

{

int i;

for (i = 0; i < CONFIG_NR_DRAM_BANKS; i++) {

params->hdr.tag = ATAG_MEM;

params->hdr.size = tag_size (tag_mem32);

params->u.mem.start = bd->bi_dram[i].start;

params->u.mem.size = bd->bi_dram[i].size;

params = tag_next (params);

}

}

过程类似,将第三个tag设为ATAG_MEM,将mem的start,size保存在此处,如果有多片ram(CONFIG_NR_DRAM_BANKS > 1),则将下一个tag保存下一片ram的信息,依次类推。

回到boot_prep_linux中,调用setup_board_tags,这个函数是__weak属性,我们可以在自己的板级文件中去实现来保存跟板子相关的参数,如果没有实现,则是空函数。

最后调用setup_end_tags,如下:

[cpp] view
plain copy







static void setup_end_tag(bd_t *bd)

{

params->hdr.tag = ATAG_NONE;

params->hdr.size = 0;

}

最后将最末尾的tag设置为ATAG_NONE,标志tag结束。

这样整个参数的准备就结束了,最后在调用boot_jump_linux时会将tags的首地址也就是bi_boot_params传给kernel,供kernel来解析这些tag,kernel如何解析看第四部分kenrel如何找到并解析参数

总结一下,uboot将参数以tag数组的形式布局在内存的某一个地址,每个tag代表一种类型的参数,首尾tag标志开始和结束,首地址传给kernel供其解析。

四 kernel如何找到并解析参数

uboot在调用boot_jump_linux时最后kernel_entry(0, machid, r2);

按照二进制规范eabi,machid存在寄存器r1,r2即tag的首地址存在寄存器r2.

查看kernel的入口函数,在arch/arm/kernel/head.S,中可以看到如下一段汇编:

[cpp] view
plain copy







/*

* r1 = machine no, r2 = atags or dtb,

* r8 = phys_offset, r9 = cpuid, r10 = procinfo

*/

bl __vet_atags

可以看出kernel刚启动会调用__vet_atags来处理uboot传来的参数,如下:

[cpp] view
plain copy







__vet_atags:

tst r2, #0x3 @ aligned?

bne 1f

ldr r5, [r2, #0]

#ifdef CONFIG_OF_FLATTREE

ldr r6, =OF_DT_MAGIC @ is it a DTB?

cmp r5, r6

beq 2f

#endif

cmp r5, #ATAG_CORE_SIZE @ is first tag ATAG_CORE?

cmpne r5, #ATAG_CORE_SIZE_EMPTY

bne 1f

ldr r5, [r2, #4]

ldr r6, =ATAG_CORE

cmp r5, r6

bne 1f

2: mov pc, lr @ atag/dtb pointer is ok

1: mov r2, #0

mov pc, lr

ENDPROC(__vet_atags)

主要是对tag进行了一个简单的校验,查看tag头4个字节(tag_core的size)和第二个4字节(tag_core的type)。

之后对参数的真正分析处理是在start_kernel的setup_arch中,在arch/arm/kernel/setup.c中,如下:

[cpp] view
plain copy







void __init setup_arch(char **cmdline_p)

{

struct machine_desc *mdesc;

setup_processor();

mdesc = setup_machine_fdt(__atags_pointer);

if (!mdesc)

mdesc = setup_machine_tags(machine_arch_type);

machine_desc = mdesc;

machine_name = mdesc->name;

#ifdef CONFIG_ZONE_DMA

if (mdesc->dma_zone_size) {

extern unsigned long arm_dma_zone_size;

arm_dma_zone_size = mdesc->dma_zone_size;

}

#endif

if (mdesc->restart_mode)

reboot_setup(&mdesc->restart_mode);

init_mm.start_code = (unsigned long) _text;

init_mm.end_code = (unsigned long) _etext;

init_mm.end_data = (unsigned long) _edata;

init_mm.brk = (unsigned long) _end;

/* populate cmd_line too for later use, preserving boot_command_line */

strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);

*cmdline_p = cmd_line;

parse_early_param();

关键函数是setup_machine_tags,如下:

[cpp] view
plain copy







static struct machine_desc * __init setup_machine_tags(unsigned int nr)

{

struct tag *tags = (struct tag *)&init_tags;

struct machine_desc *mdesc = NULL, *p;

char *from = default_command_line;

。。。。

if (__atags_pointer)

tags = phys_to_virt(__atags_pointer);

else if (mdesc->atag_offset)

tags = (void *)(PAGE_OFFSET + mdesc->atag_offset);

。。。。。

if (tags->hdr.tag == ATAG_CORE) {

if (meminfo.nr_banks != 0)

squash_mem_tags(tags);

save_atags(tags);

parse_tags(tags);

}

/* parse_early_param needs a boot_command_line */

strlcpy(boot_command_line, from, COMMAND_LINE_SIZE);

。。。

}

首先回去获取tags的首地址,如果收个tag是ATAG_CORE类型,则会调用save_atags拷贝一份tags,最后调用parse_tags来分析这个tag list,如下:

[cpp] view
plain copy







static int __init parse_tag(const struct tag *tag)

{

extern struct tagtable __tagtable_begin, __tagtable_end;

struct tagtable *t;

for (t = &__tagtable_begin; t < &__tagtable_end; t++)

if (tag->hdr.tag == t->tag) {

t->parse(tag);

break;

}

return t < &__tagtable_end;

}

/*

* Parse all tags in the list, checking both the global and architecture

* specific tag tables.

*/

static void __init parse_tags(const struct tag *t)

{

for (; t->hdr.size; t = tag_next(t))

if (!parse_tag(t))

printk(KERN_WARNING

"Ignoring unrecognised tag 0x%08x\n",

t->hdr.tag);

}

遍历tags list,找到在tagstable中匹配的处理函数(hdr.tag一致),来处理响应的tag。

这个tagtable的处理函数是在调用__tagtable来注册的,如下:

[cpp] view
plain copy







static int __init parse_tag_cmdline(const struct tag *tag)

{

#if defined(CONFIG_CMDLINE_EXTEND)

strlcat(default_command_line, " ", COMMAND_LINE_SIZE);

strlcat(default_command_line, tag->u.cmdline.cmdline,

COMMAND_LINE_SIZE);

#elif defined(CONFIG_CMDLINE_FORCE)

pr_warning("Ignoring tag cmdline (using the default kernel command line)\n");

#else

strlcpy(default_command_line, tag->u.cmdline.cmdline,

COMMAND_LINE_SIZE);

#endif

return 0;

}

__tagtable(ATAG_CMDLINE, parse_tag_cmdline);

看这个对cmdline类型的tag的处理,就是将tag中的cmdline拷贝到default_command_line中。还有其他如mem类型的参数也会注册这个处理函数,来匹配处理响应的tag。这里就先以cmdline的tag为例。

这样遍历并处理完tags list之后回到setup_machine_tags,将from(即default_command_line)中的cmdline拷贝到boot_command_line,

最后返回到setup_arch中,

[cpp] view
plain copy







/* populate cmd_line too for later use, preserving boot_command_line */

strlcpy(cmd_line, boot_command_line, COMMAND_LINE_SIZE);

*cmdline_p = cmd_line;

parse_early_param();

将boot_command_line拷贝到start_kernel给setup_arch的cmdline_p中,这里中间拷贝的boot_command_line是给parse_early_param来做一个早期的参数分析的。

到这里kernel就完全接收并分析完成了uboot传过来的args。

简单的讲,uboot利用函数指针及传参规范,它将

l R0: 0x0

l R1: 机器号

l R2: 参数地址

三个参数传递给内核。

其中,R2寄存器传递的是一个指针,这个指针指向一个TAG区域。

UBOOT和Linux内核之间正是通过这个扩展了的TAG区域来进行复杂参数的传递,如 command line,文件系统信息等等,用户也可以扩展这个TAG来进行更多参数的传递。TAG区域的首地址,正是R2的值。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: