您的位置:首页 > 运维架构 > Linux

linux IIC子系统分析(七)——实例分析通过i2c-dev操作I2C设备

2016-06-13 16:44 573 查看
在前面的platform device和platform driver初始化中,我们已经实现了I2C总线驱动(adapter),但是我们的设备驱动还没有实现。如果我们现在要访问I2C设备(比如eeprom),我知道的有三总方法:

(一)i2c-dev操作I2C设备:不用添加设备驱动,用户直接在应用层完成对具体I2C 设备的驱动工作。

(二)sysfs操作I2C设备:需添加设备驱动,通过sys展示出来的文件操作设备(比如/sys/devices/platform/s3c2440-i2c/i2c-0/0-0050/eeprom)

(三)设备节点操作i2C设备:添加设备驱动,为设备驱动创建设备节点,从/dev访问I2C设备(比如/dev/eeprom)

AT24C02芯片在《linux IIC子系统分析(一)——AT24C02芯片简介》已介绍

下面以AT24C02为I2C设备实例,分别实现这三种方法。

用户要在应用程序的dev 目录下看到i2c设备节点,需要内核配置IIC选项:

I2C support-->

I2C device interface

选上该选项之后,内核将会把i2c-dev.c文件编译进内核,同时产生设备节点/dev/i2c/n,它代表一个可操作的适配器。如果不配置I2C device interface,将看不到节点/dev/i2c/n。

/*i2c_test.c
*/
#include <stdio.h>
#include <linux/types.h>
#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <errno.h>
//#include <linux/i2c-dev.h>
#define I2C_RETRIES 0x070
#define I2C_TIMEOUT 0x0702
#define I2C_RDWR 0x0707
/*********定义struct i2c_rdwr_ioctl_data和struct i2c_msg,要和内核一致*******/
struct i2c_msg
{
unsigned short addr;
unsigned short flags;
#define I2C_M_TEN 0x0010
#define I2C_M_RD 0x0001
unsigned short len;
unsigned char *buf;
};
struct i2c_rdwr_ioctl_data
{
struct i2c_msg *msgs;
int nmsgs;
/* nmsgs这个数量决定了有多少开始信号,对于“单开始时序”,取1*/
};

int main()
{
int fd,ret;
struct i2c_rdwr_ioctl_data e2prom_data;
fd=open("/dev/i2c/0",O_RDWR);
if(fd<0)
{
perror("open error");
}
e2prom_data.nmsgs=2;
e2prom_data.msgs=(struct i2c_msg*)malloc(e2prom_data.nmsgs*sizeof(struct i2c_msg));
if(!e2prom_data.msgs)
{
perror("malloc error");
exit(1);
}
ioctl(fd,I2C_TIMEOUT,1);
ioctl(fd,I2C_RETRIES,2);
/***write data to e2prom**/

e2prom_data.nmsgs=1;
(e2prom_data.msgs[0]).len=2;
(e2prom_data.msgs[0]).addr=0x50;
(e2prom_data.msgs[0]).flags=0;
(e2prom_data.msgs[0]).buf=(unsigned char*)malloc(2);
(e2prom_data.msgs[0]).buf[0]=0x10;
(e2prom_data.msgs[0]).buf[1]=0x58;
ret=ioctl(fd,I2C_RDWR,(unsigned long)&e2prom_data);
if(ret<0)
{
perror("ioctl error1");
}
sleep(1);
/******read data from e2prom*******/
e2prom_data.nmsgs=2;
(e2prom_data.msgs[0]).len=1;
(e2prom_data.msgs[0]).addr=0x50;
(e2prom_data.msgs[0]).flags=0;//write
(e2prom_data.msgs[0]).buf[0]=0x10;
(e2prom_data.msgs[1]).len=1;
(e2prom_data.msgs[1]).addr=0x50;
(e2prom_data.msgs[1]).flags=I2C_M_RD;//read
(e2prom_data.msgs[1]).buf=(unsigned char*)malloc(1);
(e2prom_data.msgs[1]).buf[0]=0;
ret=ioctl(fd,I2C_RDWR,(unsigned long)&e2prom_data);
if(ret<0)
{
perror("ioctl error2");
}
printf("buff[0]=%x\n",(e2prom_data.msgs[1]).buf[0]);
close(fd);
return 0;
}


经测试,可以正常输出:buff[0]=58

从上面的代码中可以看出来,用户直接在应用层通过适配器dev/i2c/0接口操作连接在I2C0总线上的设备。这种操作方式需要对I2C通讯总线以及I2C设备都非常熟悉才能够很好的操作,并且它的可移植性非常的差。对那些非常简单的I2C设备进行简单的操作可以使用这种方法。

上面代码是我自己写的一个测试程序。

如果要在应用层实现对EEPROM设备的所有操作接口函数,友善支臂有提供更好的应用程序。

以下代码为友善支臂提供,以供参考:

24cXX.h

/***************************************************************************
copyright            : (C) by 2003-2004 Stefano Barbato
email                : stefano@codesink.org

$Id: 24cXX.h,v 1.6 2004/02/29 11:05:28 tat Exp $
***************************************************************************/

/***************************************************************************
*                                                                         *
*   This program is free software; you can redistribute it and/or modify  *
*   it under the terms of the GNU General Public License as published by  *
*   the Free Software Foundation; either version 2 of the License, or     *
*   (at your option) any later version.                                   *
*                                                                         *
***************************************************************************/
#ifndef _24CXX_H_
#define _24CXX_H_
#include <linux/i2c-dev.h>
#include <linux/i2c.h>

#define EEPROM_TYPE_UNKNOWN	0
#define EEPROM_TYPE_8BIT_ADDR	1
#define EEPROM_TYPE_16BIT_ADDR 	2

struct eeprom
{
char *dev; 	// device file i.e. /dev/i2c-N
int addr;	// i2c address
int fd;		// file descriptor
int type; 	// eeprom type
};

/*
* opens the eeprom device at [dev_fqn] (i.e. /dev/i2c-N) whose address is
* [addr] and set the eeprom_24c32 [e]
*/
int eeprom_open(char *dev_fqn, int addr, int type, struct eeprom*);
/*
* closees the eeprom device [e]
*/
int eeprom_close(struct eeprom *e);
/*
* read and returns the eeprom byte at memory address [mem_addr]
* Note: eeprom must have been selected by ioctl(fd,I2C_SLAVE,address)
*/
int eeprom_read_byte(struct eeprom* e, __u16 mem_addr);
/*
* read the current byte
* Note: eeprom must have been selected by ioctl(fd,I2C_SLAVE,address)
*/
int eeprom_read_current_byte(struct eeprom *e);
/*
* writes [data] at memory address [mem_addr]
* Note: eeprom must have been selected by ioctl(fd,I2C_SLAVE,address)
*/
int eeprom_write_byte(struct eeprom *e, __u16 mem_addr, __u8 data);

#endif
24cXX.c

/***************************************************************************
copyright            : (C) by 2003-2004 Stefano Barbato
email                : stefano@codesink.org

$Id: 24cXX.h,v 1.6 2004/02/29 11:05:28 tat Exp $
***************************************************************************/

/***************************************************************************
*                                                                         *
*   This program is free software; you can redistribute it and/or modify  *
*   it under the terms of the GNU General Public License as published by  *
*   the Free Software Foundation; either version 2 of the License, or     *
*   (at your option) any later version.                                   *
*                                                                         *
***************************************************************************/
#include <stdio.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdlib.h>
#include <linux/fs.h>
#include <sys/types.h>
#include <sys/ioctl.h>
#include <errno.h>
#include <assert.h>
#include <string.h>
#include "24cXX.h"

static inline __s32 i2c_smbus_access(int file, char read_write, __u8 command,
int size, union i2c_smbus_data *data)
{
struct i2c_smbus_ioctl_data args;

args.read_write = read_write;
args.command = command;
args.size = size;
args.data = data;
return ioctl(file,I2C_SMBUS,&args);
}

static inline __s32 i2c_smbus_write_quick(int file, __u8 value)
{
return i2c_smbus_access(file,value,0,I2C_SMBUS_QUICK,NULL);
}

static inline __s32 i2c_smbus_read_byte(int file)
{
union i2c_smbus_data data;
if (i2c_smbus_access(file,I2C_SMBUS_READ,0,I2C_SMBUS_BYTE,&data))
return -1;
else
return 0x0FF & data.byte;
}

static inline __s32 i2c_smbus_write_byte(int file, __u8 value)
{
return i2c_smbus_access(file,I2C_SMBUS_WRITE,value,
I2C_SMBUS_BYTE,NULL);
}

static inline __s32 i2c_smbus_read_byte_data(int file, __u8 command)
{
union i2c_smbus_data data;
if (i2c_smbus_access(file,I2C_SMBUS_READ,command,
I2C_SMBUS_BYTE_DATA,&data))
return -1;
else
return 0x0FF & data.byte;
}

static inline __s32 i2c_smbus_write_byte_data(int file, __u8 command,
__u8 value)
{
union i2c_smbus_data data;
data.byte = value;
return i2c_smbus_access(file,I2C_SMBUS_WRITE,command,
I2C_SMBUS_BYTE_DATA, &data);
}

static inline __s32 i2c_smbus_read_word_data(int file, __u8 command)
{
union i2c_smbus_data data;
if (i2c_smbus_access(file,I2C_SMBUS_READ,command,
I2C_SMBUS_WORD_DATA,&data))
return -1;
else
return 0x0FFFF & data.word;
}

static inline __s32 i2c_smbus_write_word_data(int file, __u8 command,
__u16 value)
{
union i2c_smbus_data data;
data.word = value;
return i2c_smbus_access(file,I2C_SMBUS_WRITE,command,
I2C_SMBUS_WORD_DATA, &data);
}

static inline __s32 i2c_smbus_process_call(int file, __u8 command, __u16 value)
{
union i2c_smbus_data data;
data.word = value;
if (i2c_smbus_access(file,I2C_SMBUS_WRITE,command,
I2C_SMBUS_PROC_CALL,&data))
return -1;
else
return 0x0FFFF & data.word;
}

/* Returns the number of read bytes */
static inline __s32 i2c_smbus_read_block_data(int file, __u8 command,
__u8 *values)
{
union i2c_smbus_data data;
int i;
if (i2c_smbus_access(file,I2C_SMBUS_READ,command,
I2C_SMBUS_BLOCK_DATA,&data))
return -1;
else {
for (i = 1; i <= data.block[0]; i++)
values[i-1] = data.block[i];
return data.block[0];
}
}

static inline __s32 i2c_smbus_write_block_data(int file, __u8 command,
__u8 length, __u8 *values)
{
union i2c_smbus_data data;
int i;
if (length > 32)
length = 32;
for (i = 1; i <= length; i++)
data.block[i] = values[i-1];
data.block[0] = length;
return i2c_smbus_access(file,I2C_SMBUS_WRITE,command,
I2C_SMBUS_BLOCK_DATA, &data);
}

/* Returns the number of read bytes */
static inline __s32 i2c_smbus_read_i2c_block_data(int file, __u8 command,
__u8 *values)
{
union i2c_smbus_data data;
int i;
if (i2c_smbus_access(file,I2C_SMBUS_READ,command,
I2C_SMBUS_I2C_BLOCK_DATA,&data))
return -1;
else {
for (i = 1; i <= data.block[0]; i++)
values[i-1] = data.block[i];
return data.block[0];
}
}

static inline __s32 i2c_smbus_write_i2c_block_data(int file, __u8 command,
__u8 length, __u8 *values)
{
union i2c_smbus_data data;
int i;
if (length > 32)
length = 32;
for (i = 1; i <= length; i++)
data.block[i] = values[i-1];
data.block[0] = length;
return i2c_smbus_access(file,I2C_SMBUS_WRITE,command,
I2C_SMBUS_I2C_BLOCK_DATA, &data);
}

/* Returns the number of read bytes */
static inline __s32 i2c_smbus_block_process_call(int file, __u8 command,
__u8 length, __u8 *values)
{
union i2c_smbus_data data;
int i;
if (length > 32)
length = 32;
for (i = 1; i <= length; i++)
data.block[i] = values[i-1];
data.block[0] = length;
if (i2c_smbus_access(file,I2C_SMBUS_WRITE,command,
I2C_SMBUS_BLOCK_PROC_CALL,&data))
return -1;
else {
for (i = 1; i <= data.block[0]; i++)
values[i-1] = data.block[i];
return data.block[0];
}
}

static int i2c_write_1b(struct eeprom *e, __u8 buf)
{
int r;
// we must simulate a plain I2C byte write with SMBus functions
r = i2c_smbus_write_byte(e->fd, buf);
if(r < 0)
fprintf(stderr, "Error i2c_write_1b: %s\n", strerror(errno));
usleep(10);
return r;
}

static int i2c_write_2b(struct eeprom *e, __u8 buf[2])
{
int r;
// we must simulate a plain I2C byte write with SMBus functions
r = i2c_smbus_write_byte_data(e->fd, buf[0], buf[1]);
if(r < 0)
fprintf(stderr, "Error i2c_write_2b: %s\n", strerror(errno));
usleep(10);
return r;
}

static int i2c_write_3b(struct eeprom *e, __u8 buf[3])
{
int r;
// we must simulate a plain I2C byte write with SMBus functions
// the __u16 data field will be byte swapped by the SMBus protocol
r = i2c_smbus_write_word_data(e->fd, buf[0], buf[2] << 8 | buf[1]);
if(r < 0)
fprintf(stderr, "Error i2c_write_3b: %s\n", strerror(errno));
usleep(10);
return r;
}

#define CHECK_I2C_FUNC( var, label ) \
do { 	if(0 == (var & label)) { \
fprintf(stderr, "\nError: " \
#label " function is required. Program halted.\n\n"); \
exit(1); } \
} while(0);

int eeprom_open(char *dev_fqn, int addr, int type, struct eeprom* e)
{
int funcs, fd, r;
e->fd = e->addr = 0;
e->dev = 0;

fd = open(dev_fqn, O_RDWR);
if(fd <= 0)
{
fprintf(stderr, "Error eeprom_open: %s\n", strerror(errno));
return -1;
}

// get funcs list
if((r = ioctl(fd, I2C_FUNCS, &funcs) < 0))
{
fprintf(stderr, "Error eeprom_open: %s\n", strerror(errno));
return -1;
}

// check for req funcs
CHECK_I2C_FUNC( funcs, I2C_FUNC_SMBUS_READ_BYTE );
CHECK_I2C_FUNC( funcs, I2C_FUNC_SMBUS_WRITE_BYTE );
CHECK_I2C_FUNC( funcs, I2C_FUNC_SMBUS_READ_BYTE_DATA );
CHECK_I2C_FUNC( funcs, I2C_FUNC_SMBUS_WRITE_BYTE_DATA );
CHECK_I2C_FUNC( funcs, I2C_FUNC_SMBUS_READ_WORD_DATA );
CHECK_I2C_FUNC( funcs, I2C_FUNC_SMBUS_WRITE_WORD_DATA );

// set working device
if( ( r = ioctl(fd, I2C_SLAVE, addr)) < 0)
{
fprintf(stderr, "Error eeprom_open: %s\n", strerror(errno));
return -1;
}
e->fd = fd;
e->addr = addr;
e->dev = dev_fqn;
e->type = type;
return 0;
}

int eeprom_close(struct eeprom *e)
{
close(e->fd);
e->fd = -1;
e->dev = 0;
e->type = EEPROM_TYPE_UNKNOWN;
return 0;
}

#if 0
int eeprom_24c32_write_byte(struct eeprom *e, __u16 mem_addr, __u8 data)
{
__u8 buf[3] = { (mem_addr >> 8) & 0x00ff, mem_addr & 0x00ff, data };
return i2c_write_3b(e, buf);
}

int eeprom_24c32_read_current_byte(struct eeprom* e)
{
ioctl(e->fd, BLKFLSBUF); // clear kernel read buffer
return i2c_smbus_read_byte(e->fd);
}

int eeprom_24c32_read_byte(struct eeprom* e, __u16 mem_addr)
{
int r;
ioctl(e->fd, BLKFLSBUF); // clear kernel read buffer
__u8 buf[2] = { (mem_addr >> 8) & 0x0ff, mem_addr & 0x0ff };
r = i2c_write_2b(e, buf);
if (r < 0)
return r;
r = i2c_smbus_read_byte(e->fd);
return r;
}
#endif

int eeprom_read_current_byte(struct eeprom* e)
{
ioctl(e->fd, BLKFLSBUF); // clear kernel read buffer
return i2c_smbus_read_byte(e->fd);
}

int eeprom_read_byte(struct eeprom* e, __u16 mem_addr)
{
int r;
ioctl(e->fd, BLKFLSBUF); // clear kernel read buffer
if(e->type == EEPROM_TYPE_8BIT_ADDR)
{
__u8 buf =  mem_addr & 0x0ff;
r = i2c_write_1b(e, buf);
} else if(e->type == EEPROM_TYPE_16BIT_ADDR) {
__u8 buf[2] = { (mem_addr >> 8) & 0x0ff, mem_addr & 0x0ff };
r = i2c_write_2b(e, buf);
} else {
fprintf(stderr, "ERR: unknown eeprom type\n");
return -1;
}
if (r < 0)
return r;
r = i2c_smbus_read_byte(e->fd);
return r;
}

int eeprom_write_byte(struct eeprom *e, __u16 mem_addr, __u8 data)
{
if(e->type == EEPROM_TYPE_8BIT_ADDR) {
__u8 buf[2] = { mem_addr & 0x00ff, data };
return i2c_write_2b(e, buf);
} else if(e->type == EEPROM_TYPE_16BIT_ADDR) {
__u8 buf[3] =
{ (mem_addr >> 8) & 0x00ff, mem_addr & 0x00ff, data };
return i2c_write_3b(e, buf);
}
fprintf(stderr, "ERR: unknown eeprom type\n");
return -1;
}
eeprog.c

/***************************************************************************
copyright            : (C) by 2009 Guangzhou FriendlyaRM, in China
email                : capbily@163.com
website		 : http://www.arm9.net 
***************************************************************************/

#include <stdio.h>
#include <fcntl.h>
#include <getopt.h>
#include <unistd.h>
#include <stdlib.h>
#include <errno.h>
#include <string.h>
#include <sys/types.h>
#include <sys/stat.h>
#include "24cXX.h"

#define usage_if(a) do { do_usage_if( a , __LINE__); } while(0);
void do_usage_if(int b, int line)
{
const static char *eeprog_usage =
"I2C-24C08(256 bytes) Read/Write Program, ONLY FOR TEST!\n"
"FriendlyARM Computer Tech. 2009\n";
if(!b)
return;
fprintf(stderr, "%s\n[line %d]\n", eeprog_usage, line);
exit(1);
}

#define die_if(a, msg) do { do_die_if( a , msg, __LINE__); } while(0);
void do_die_if(int b, char* msg, int line)
{
if(!b)
return;
fprintf(stderr, "Error at line %d: %s\n", line, msg);
fprintf(stderr, "	sysmsg: %s\n", strerror(errno));
exit(1);
}

static int read_from_eeprom(struct eeprom *e, int addr, int size)
{
int ch, i;
for(i = 0; i < size; ++i, ++addr)
{
die_if((ch = eeprom_read_byte(e, addr)) < 0, "read error");
if( (i % 16) == 0 )
printf("\n %.4x|  ", addr);
else if( (i % 8) == 0 )
printf("  ");
printf("%.2x ", ch);
fflush(stdout);
}
fprintf(stderr, "\n\n");
return 0;
}

static int write_to_eeprom(struct eeprom *e, int addr)
{
int i;
for(i=0, addr=0; i<256; i++, addr++)
{
if( (i % 16) == 0 )
printf("\n %.4x|  ", addr);
else if( (i % 8) == 0 )
printf("  ");
printf("%.2x ", i);
fflush(stdout);
die_if(eeprom_write_byte(e, addr, i), "write error");
}
fprintf(stderr, "\n\n");
return 0;
}

int main(int argc, char** argv)
{
struct eeprom e;
int op;

op = 0;

usage_if(argc != 2 || argv[1][0] != '-' || argv[1][2] != '\0');
op = argv[1][1];

fprintf(stderr, "Open /dev/i2c/0 with 8bit mode\n");
die_if(eeprom_open("/dev/i2c/0", 0x50, EEPROM_TYPE_8BIT_ADDR, &e) < 0,
"unable to open eeprom device file "
"(check that the file exists and that it's readable)");
switch(op)
{
case 'r':
fprintf(stderr, "  Reading 256 bytes from 0x0\n");
read_from_eeprom(&e, 0, 256);
break;
case 'w':
fprintf(stderr, "  Writing 0x00-0xff into 24C08 \n");
write_to_eeprom(&e, 0);
break;
default:
usage_if(1);
exit(1);
}
eeprom_close(&e);

return 0;
}
Makefile

CFLAGS= -Wall -O2
CC=arm-linux-gcc

i2c: eeprog.o 24cXX.o
$(CC) $(CFLAGS) -o i2c eeprog.o 24cXX.o

clean:
rm -f i2c 24cXX.o eeprog.o


说明:

1.分析的内核版本是linux2.6.32.2

2.开发板为友善之臂的mini2440, 用的是ARM9(S3C2440A)处理器

3.链接的IIC设备是EEPROM(AT24C02)

4.按照内核I2C子系统的注册顺序分析。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: