您的位置:首页 > 其它

BZOJ1016 最小生成树计数

2016-06-11 18:35 253 查看

Description

  现在给出了一个简单无向加权图。你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的
最小生成树。(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的)。由于不同的最小生
成树可能很多,所以你只需要输出方案数对31011的模就可以了。

Input

  第一行包含两个数,n和m,其中1<=n<=100; 1<=m<=1000; 表示该无向图的节点数和边数。每个节点用1~n的整
数编号。接下来的m行,每行包含两个整数:a, b, c,表示节点a, b之间的边的权值为c,其中1<=c<=1,000,000,0
00。数据保证不会出现自回边和重边。注意:具有相同权值的边不会超过10条。

Output

  输出不同的最小生成树有多少个。你只需要输出数量对31011的模就可以了。

Sample Input

4 6

1 2 1

1 3 1

1 4 1

2 3 2

2 4 1

3 4 1

Sample Output

8

正解:克鲁斯卡尔最小生成树+搜索
解题报告:
  今天考场上考了一道这个题目,我居然没看出来就是一道求最小生成树个数的裸题。。。

  说起来还是挺水的,就是有许多性质还掌握的不够熟练。不同的最小生成树方案,每种权值的边的数量是确定的,每种权值的边的作用是确定的。所以每种权值看作一个集合,这个集合若想对最终结果产生贡献,即是最小生成树,需要选取的边数是固定的。
  排序以后先做一遍最小生成树,得出每种权值的边使用的数量x

  然后对于每一种权值的边搜索,得出每一种权值的边选择方案。就是枚举某条边选不选,暴力搜索是否可行。(因为题目说同种权值不超过10,所以指数级大暴力不虚)

  最后乘法原理,每一步的方案数相乘。

//It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#ifdef WIN32
#define OT "%I64d"
#else
#define OT "%lld"
#endif
using namespace std;
typedef long long LL;
const int MAXN = 211;
const int MAXM = 10011;
const int MOD = 31011;
int n,m;
int first[MAXN],next[MAXM],to[MAXM];
int cnt;
int father[MAXN];
int ans,lin;

struct build{
int l,r,cnt;
}a[MAXM];

struct edge{
int x,y,z;
}e[MAXM];

inline int getint()
{
int w=0,q=0;
char c=getchar();
while((c<'0' || c>'9') && c!='-') c=getchar();
if (c=='-')  q=1, c=getchar();
while (c>='0' && c<='9') w=w*10+c-'0', c=getchar();
return q ? -w : w;
}

inline bool cmp(edge q,edge qq){ return q.z<qq.z; }

inline int find(int x){
//不能路径压缩!!!
if(father[x]!=x) return find(father[x]); //father[x]=find(father[x]);
return father[x];
}

inline void dfs(int x,int now,int gong){
if(now==a[x].r+1) {
if(gong==a[x].cnt) lin++;//必须选指定的条数
return ;
}
int r1=find(e[now].x),r2=find(e[now].y);
if(r1!=r2) {//枚举选还是不选
father[r1]=r2;
dfs(x,now+1,gong+1);
father[r1]=r1; father[r2]=r2;
}
dfs(x,now+1,gong);//不选
}

inline void solve(){
n=getint(); m=getint();
int x,y,z;
for(int i=1;i<=m;i++) {
x=getint(); y=getint(); z=getint();
e[i].x=x; e[i].y=y; e[i].z=z;
}

sort(e+1,e+m+1,cmp);

for(int i=1;i<=n;i++) father[i]=i;

int gg=0;
for(int i=1;i<=m;i++) {
if(e[i].z!=e[i-1].z) { cnt++; a[cnt].l=i; a[cnt-1].r=i-1; }
int r1=find(e[i].x),r2=find(e[i].y);
if(r1!=r2) {
father[r2]=r1;
a[cnt].cnt++;
gg++;
//if(gg==n-1) break;
}
}
a[cnt].r=m;

if(gg!=n-1) { printf("0"); return ;  }
for(int i=1;i<=n;i++) father[i]=i;

ans=1;
for(int i=1;i<=cnt;i++) {
lin=0;
dfs(i,a[i].l,0);
ans*=lin; if(ans>=MOD) ans%=MOD;

for(int j=a[i].l;j<=a[i].r;j++) {
int r1=find(e[j].x),r2=find(e[j].y);
if(r1!=r2) father[r2]=r1;
}
}

printf("%d",ans);
}

int main()
{
solve();
return 0;
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: