您的位置:首页 > 其它

斐波那契数列的第 n 项 mod 1000000007(矩阵乘法)

2016-05-16 22:11 387 查看
矩阵快速幂:
F(0) = 0
F(1) = 1
F(n) = F(n - 1) + F(n - 2) (n >= 2)

(1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...)
给出n,求F(n),由于结果很大,输出F(n) % 1000000007的结果即可。

引例 :求斐波那契数列的第 n 项 mod
1000000007 的值, n <= 10 18 。

分析 :斐波那契数列的递推式为 f(n) = f(n-1)+f(n-2) ,直接循环求出 f(n) 的时间复杂度是 O(n) ,对于题目中的数据范围显然无法承受。很明显我们需要对数级别的算法。由于 f(n) = 1*f(n-1)
+ 1*f(n-2) 这样的形式很类似于矩阵的乘法
,所以我们可以先把这个问题复杂化一下,将递推求解 f(n) 与 f(n-1) 的过程看作是某两个矩阵相乘的结果,式子如下:



即:






所以我们只要不断地乘以上面式子中的第二个矩阵(也就是第二个矩阵的幂)就能够不断递推得到 f(n) 。但是这样于解题没有丝毫益处,反而使得常数变得更大(矩阵乘法的复杂度为立方级别)。所以我们就要利用矩阵乘法的一条重要性质:结合律。即矩阵 (A*B)*C = A*(B*C) ,证明过程可参见 2008 年国家集训队俞华程的论文。

有了结合律我们就可以用快速幂计算矩阵的幂,问题的复杂度顺利降到了 O(logn) 。

代码:

#include<iostream>
#include<memory.h>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<string>
#include<cstdlib>
#include<iomanip>
#include<vector>
#include<list>
#include<map>
#include<algorithm>
typedef long long LL;
const LL maxn=1000+10;
const LL mod=1000000007;
const int N=2;
using namespace std;
struct Matrix
{
LL m

;
};
Matrix A=
{
1,1,
1,0
};
Matrix I=
{
1,0,
0,1
};
Matrix multi(Matrix a,Matrix b)
{
Matrix c;
for(int i=0;i<N;i++)
{
for(int j=0;j<N;j++)
{
c.m[i][j]=0;
for(int k=0;k<N;k++)
c.m[i][j]+=a.m[i][k]*b.m[k][j]%mod;

c.m[i][j]%=mod;
}
}
return c;
}
Matrix power(Matrix A,int k)
{
Matrix ans=I,p=A;
while(k)
{
if(k&1)
{
ans=multi(ans,p);
k--;
}
k>>=1;
p=multi(p,p);
}
return ans;
}
int main()
{
int n;
while(~scanf("%d",&n))
{
Matrix ans =power(A,n-1);
printf("%lld\n",ans,m[0][0]);
}
return 0;
}
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: