您的位置:首页 > 其它

select(poll)系统调用实现解析(一)

2016-05-11 17:43 375 查看
 copy from  http://blog.csdn.net/lizhiguo0532/article/details/6568964#comments
上层要能使用select()和poll()系统调用来监测某个设备文件描述符,那么就必须实现这个设备驱动程序中struct file_operation结构体的poll函数,为什么?
因为这两个系统调用最终都会调用驱动程序中的poll函数来初始化一个等待队列项, 然后将其加入到驱动程序中的等待队列头,这样就可以在硬件可读写的时候wake up这个等待队列头,然后等待(可以是多个)同一个硬件设备可读写事件的进程都将被唤醒。
(这个等待队列头可以包含多个等待队列项,这些不同的等待队列项是由不同的应用程序调用select或者poll来监测同一个硬件设备的时候调用file_operation的poll函数初始化填充的)。
       下面就以select系统调用分析具体实现,源码路径:fs/select.c。
      
一、          select()系统调用代码走读
调用顺序如下:sys_select() à core_sys_select() à do_select() à fop->poll()
 
SYSCALL_DEFINE5(select, int, n, fd_set __user *, inp, fd_set __user *, outp,
fd_set __user *, exp, struct timeval __user *, tvp)
{
       struct timespec end_time, *to = NULL;
       struct timeval tv;
       int ret;
 
       if (tvp) {// 如果超时值非NULL
              if (copy_from_user(&tv, tvp, sizeof(tv)))   // 从用户空间取数据到内核空间
                     return -EFAULT;
 
              to = &end_time;
              // 得到timespec格式的未来超时时间
              if (poll_select_set_timeout(to,
                            tv.tv_sec + (tv.tv_usec / USEC_PER_SEC),
                            (tv.tv_usec % USEC_PER_SEC) * NSEC_PER_USEC))
                     return -EINVAL;
       }
 
       ret = core_sys_select(n, inp, outp, exp, to);             // 关键函数
       ret = poll_select_copy_remaining(&end_time, tvp, 1, ret);
       /*如果有超时值, 并拷贝离超时时刻还剩的时间到用户空间的timeval中*/
      
       return ret;             // 返回就绪的文件描述符的个数
}
 
==================================================================
       core_sys_select()函数解析
 
int core_sys_select(int n, fd_set __user *inp, fd_set __user *outp,
                        fd_set __user *exp, struct timespec *end_time)
{
       fd_set_bits fds;
       /**
       typedef struct {
              unsigned long *in, *out, *ex;
              unsigned long *res_in, *res_out, *res_ex;
} fd_set_bits;
这个结构体中定义的全是指针,这些指针都是用来指向描述符集合的。
**/
       void *bits;
       int ret, max_fds;
       unsigned int size;
       struct fdtable *fdt;
       /* Allocate small arguments on the stack to save memory and be faster */
       long stack_fds[SELECT_STACK_ALLOC/sizeof(long)];
       // 256/32 = 8, stack中分配的空间
       /**
       @ include/linux/poll.h
#define FRONTEND_STACK_ALLOC     256
#define SELECT_STACK_ALLOC    FRONTEND_STACK_ALLOC
       **/
 
       ret = -EINVAL;
       if (n < 0)
              goto out_nofds;
 
       /* max_fds can increase, so grab it once to avoid race */
       rcu_read_lock();
       fdt = files_fdtable(current->files); // RCU ref, 获取当前进程的文件描述符表
       max_fds = fdt->max_fds;
       rcu_read_unlock();
       if (n > max_fds)// 如果传入的n大于当前进程最大的文件描述符,给予修正
              n = max_fds;
 
       /*
        * We need 6 bitmaps (in/out/ex for both incoming and outgoing),
        * since we used fdset we need to allocate memory in units of
        * long-words.
        */
       size = FDS_BYTES(n);
       // 以一个文件描述符占一bit来计算,传递进来的这些fd_set需要用掉多少个字
       bits = stack_fds;
       if (size > sizeof(stack_fds) / 6) {
              // 除6,为什么?因为每个文件描述符需要6个bitmaps
              /* Not enough space in on-stack array; must use kmalloc */
              ret = -ENOMEM;
              bits = kmalloc(6 * size, GFP_KERNEL); // stack中分配的太小,直接kmalloc
              if (!bits)
                     goto out_nofds;
       }
       // 这里就可以明显看出struct fd_set_bits结构体的用处了。
       fds.in      = bits;
       fds.out     = bits +   size;
       fds.ex      = bits + 2*size;
       fds.res_in  = bits + 3*size;
       fds.res_out = bits + 4*size;
       fds.res_ex  = bits + 5*size;
       // get_fd_set仅仅调用copy_from_user从用户空间拷贝了fd_set
       if ((ret = get_fd_set(n, inp, fds.in)) ||
           (ret = get_fd_set(n, outp, fds.out)) ||
           (ret = get_fd_set(n, exp, fds.ex)))
              goto out;
       zero_fd_set(n, fds.res_in);  // 对这些存放返回状态的字段清0
       zero_fd_set(n, fds.res_out);
       zero_fd_set(n, fds.res_ex);
 
       ret = do_select(n, &fds, end_time);    // 关键函数,完成主要的工作
 
       if (ret < 0)             // 有错误
              goto out;
       if (!ret) {              // 超时返回,无设备就绪
              ret = -ERESTARTNOHAND;
              if (signal_pending(current))
                     goto out;
              ret = 0;
       }
 
       // 把结果集,拷贝回用户空间
       if (set_fd_set(n, inp, fds.res_in) ||
           set_fd_set(n, outp, fds.res_out) ||
           set_fd_set(n, exp, fds.res_ex))
              ret = -EFAULT;
 
out:
       if (bits != stack_fds)
              kfree(bits);     // 如果有申请空间,那么释放fds对应的空间
out_nofds:
       return ret;                    // 返回就绪的文件描述符的个数
}
 
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
do_select()函数解析:
 
int do_select(int n, fd_set_bits *fds, struct timespec *end_time)
{
       ktime_t expire, *to = NULL;
       struct poll_wqueues table;
       poll_table *wait;
       int retval, i, timed_out = 0;
       unsigned long slack = 0;
 
       rcu_read_lock();
       // 根据已经设置好的fd位图检查用户打开的fd, 要求对应fd必须打开, 并且返回
// 最大的fd。
       retval = max_select_fd(n, fds);
       rcu_read_unlock();
 
       if (retval < 0)
              return retval;
       n = retval;
 
       // 一些重要的初始化:
       // poll_wqueues.poll_table.qproc函数指针初始化,该函数是驱动程序中poll函数实
       // 现中必须要调用的poll_wait()中使用的函数。
       poll_initwait(&table);
       wait = &table.pt;
       if (end_time && !end_time->tv_sec && !end_time->tv_nsec) {
              wait = NULL;
              timed_out = 1;     // 如果系统调用带进来的超时时间为0,那么设置
                                          // timed_out = 1,表示不阻塞,直接返回。
       }
 
       if (end_time && !timed_out)
              slack = estimate_accuracy(end_time); // 超时时间转换
 
       retval = 0;
       for (;;) {
              unsigned long *rinp, *routp, *rexp, *inp, *outp, *exp;
 
              inp = fds->in; outp = fds->out; exp = fds->ex;
              rinp = fds->res_in; routp = fds->res_out; rexp = fds->res_ex;
 
              // 所有n个fd的循环
              for (i = 0; i < n; ++rinp, ++routp, ++rexp) {
                     unsigned long in, out, ex, all_bits, bit = 1, mask, j;
                     unsigned long res_in = 0, res_out = 0, res_ex = 0;
                     const struct file_operations *f_op = NULL;
                     struct file *file = NULL;
 
                     // 先取出当前循环周期中的32个文件描述符对应的bitmaps
                     in = *inp++; out = *outp++; ex = *exp++;
                     all_bits = in | out | ex;  // 组合一下,有的fd可能只监测读,或者写,
// 或者e rr,或者同时都监测
                     if (all_bits == 0) {  // 这32个描述符没有任何状态被监测,就跳入
// 下一个32个fd的循环中
                            i += __NFDBITS; //每32个文件描述符一个循环,正好一个long型数
                            continue;
                     }
 
                     // 本次32个fd的循环中有需要监测的状态存在
                     for (j = 0; j < __NFDBITS; ++j, ++i, bit <<= 1) {// 初始bit = 1
                            int fput_needed;
                            if (i >= n)      // i用来检测是否超出了最大待监测的fd
                                   break;
                            if (!(bit & all_bits))
                                   continue; // bit每次循环后左移一位的作用在这里,用来
// 跳过没有状态监测的fd
                            file = fget_light(i, &fput_needed); // 得到file结构指针,并增加
// 引用计数字段f_count
                            if (file) {        // 如果file存在
                                   f_op = file->f_op;
                                   mask = DEFAULT_POLLMASK;
                                   if (f_op && f_op->poll) {
                                          wait_key_set(wait, in, out, bit);// 设置当前fd待监测
//  的事件掩码
                                          mask = (*f_op->poll)(file, wait);
                                          /*
                                                 调用驱动程序中的poll函数,以evdev驱动中的
evdev_poll()为例该函数会调用函数poll_wait(file, &evdev->wait, wait),继续调用__pollwait()回调来分配一个poll_table_entry结构体,该结构体有一个内嵌的等待队列项,设置好wake时调用的回调函数后将其添加到驱动程序中的等待队列头中。
                                          */
                                   }
                                   fput_light(file, fput_needed);
                                   // 释放file结构指针,实际就是减小他的一个引用
计数字段f_count。
 
                                   // mask是每一个fop->poll()程序返回的设备状态掩码。
                                   if ((mask & POLLIN_SET) && (in & bit)) {
                                          res_in |= bit;         // fd对应的设备可读
                                          retval++;
                                          wait = NULL;       // 后续有用,避免重复执行__pollwait()
                                   }
                                   if ((mask & POLLOUT_SET) && (out & bit)) {
                                          res_out |= bit;              // fd对应的设备可写
                                          retval++;
                                          wait = NULL;
                                   }
                                   if ((mask & POLLEX_SET) && (ex & bit)) {
                                          res_ex |= bit;
                                          retval++;
                                          wait = NULL;
                                   }
                            }
                     }
                     // 根据poll的结果写回到输出位图里,返回给上级函数
                     if (res_in)
                            *rinp = res_in;
                     if (res_out)
                            *routp = res_out;
                     if (res_ex)
                            *rexp = res_ex;
                     /*
                            这里的目的纯粹是为了增加一个抢占点。
                            在支持抢占式调度的内核中(定义了CONFIG_PREEMPT),
cond_resched是空操作。
                     */
                     cond_resched();
              }
              wait = NULL;  // 后续有用,避免重复执行__pollwait()
              if (retval || timed_out || signal_pending(current))
                     break;
              if (table.error) {
                     retval = table.error;
                     break;
              }
              /*跳出这个大循环的条件有: 有设备就绪或有异常(retval!=0), 超时(timed_out
              = 1), 或者有中止信号出现*/
 
              /*
               * If this is the first loop and we have a timeout
               * given, then we convert to ktime_t and set the to
               * pointer to the expiry value.
               */
              if (end_time && !to) {
                     expire = timespec_to_ktime(*end_time);
                     to = &expire;
              }
 
              // 第一次循环中,当前用户进程从这里进入休眠,
// 上面传下来的超时时间只是为了用在睡眠超时这里而已
              // 超时,poll_schedule_timeout()返回0;被唤醒时返回-EINTR
              if (!poll_schedule_timeout(&table, TASK_INTERRUPTIBLE,
                                      to, slack))
                     timed_out = 1; /* 超时后,将其设置成1,方便后面退出循环返回到上层 */
       }
 
       // 清理各个驱动程序的等待队列头,同时释放掉所有空出来
// 的page页(poll_table_entry)
       poll_freewait(&table);
 
       return retval; // 返回就绪的文件描述符的个数
}
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
==================================================================
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: