您的位置:首页 > 数据库

Spark Streaming + Spark SQL 实现配置化ETL流程

2016-04-28 00:00 267 查看
摘要: Spark Streaming 非常适合ETL。但是其开发模块化程度不高,所以这里提供了一套方案,该方案提供了新的API用于开发Spark Streaming程序,同时也实现了模块化,配置化,并且支持SQL做数据处理。

前言

传统的Spark Streaming程序需要:

构建StreamingContext

设置checkpoint

链接数据源

各种transform

foreachRDD 输出

通常而言,你可能会因为要走完上面的流程而构建了一个很大的程序,比如一个main方法里上百行代码,虽然在开发小功能上足够便利,但是复用度更方面是不够的,而且不利于协作,所以需要一个更高层的开发包提供支持。

如何开发一个Spark Streaming程序

我只要在配置文件添加如下一个job配置,就可以作为标准的的Spark Streaming 程序提交运行:

{

"test": {
"desc": "测试",
"strategy": "streaming.core.strategy.SparkStreamingStrategy",
"algorithm": [],
"ref": [],
"compositor": [
{
"name": "streaming.core.compositor.kafka.MockKafkaStreamingCompositor",
"params": [
{
"metadata.broker.list":"xxx",
"auto.offset.reset":"largest",
"topics":"xxx"
}
]      },
{
"name": "streaming.core.compositor.spark.JSONTableCompositor",
"params": [{"tableName":"test"}
]      },
{
"name": "streaming.core.compositor.spark.SQLCompositor",
"params": [{"sql":"select a from test"}
]      },
{
"name": "streaming.core.compositor.RDDPrintOutputCompositor",
"params": [
{
}
]      }
],
"configParams": {
}  }}

上面的配置相当于完成了如下的一个流程:

从Kafka消费数据

将Kafka数据转化为表

通过SQL进行处理

打印输出

是不是很简单,而且还可以支持热加载,动态添加job等

特性

该实现的特性有:

配置化

支持多Job配置

支持各种数据源模块

支持通过SQL完成数据处理

支持多种输出模块

未来可扩展的支持包含:

动态添加或者删除job更新,而不用重启Spark Streaming

支持Storm等其他流式引擎

更好的多job互操作

配置格式说明

该实现完全基于ServiceframeworkDispatcher 完成,核心功能大概只花了三个小时。

这里我们先理出几个概念:

Spark Streaming 定义为一个App

每个Action定义为一个Job.一个App可以包含多个Job

配置文件结构设计如下:

{  "job1": {    "desc": "测试",    "strategy": "streaming.core.strategy.SparkStreamingStrategy",    "algorithm": [],    "ref": [],    "compositor": [
{        "name": "streaming.core.compositor.kafka.MockKafkaStreamingCompositor",        "params": [
{            "metadata.broker.list":"xxx",            "auto.offset.reset":"largest",            "topics":"xxx"
}
]
} ,
],    "configParams": {
}
},  "job2":{
........
}
}

一个完整的App 对应一个配置文件。每个顶层配置选项,如job1,job2分别对应一个工作流。他们最终都会运行在一个App上(Spark Streaming实例上)。

strategy 用来定义如何组织 compositor,algorithm, ref 的调用关系

algorithm作为数据来源

compositor 数据处理链路模块。大部分情况我们都是针对该接口进行开发

ref 是对其他job的引用。通过配合合适的strategy,我们将多个job组织成一个新的job

每个组件( compositor,algorithm, strategy) 都支持参数配置

上面主要是解析了配置文件的形态,并且ServiceframeworkDispatcher 已经给出了一套接口规范,只要照着实现就行。

模块实现

那对应的模块是如何实现的?本质是将上面的配置文件,通过已经实现的模块,转化为Spark Streaming程序。

以SQLCompositor 的具体实现为例:

class SQLCompositor[T] extends Compositor[T] {  private var _configParams: util.List[util.Map[Any, Any]] = _  val logger = Logger.getLogger(classOf[SQLCompositor[T]].getName)//策略引擎ServiceFrameStrategy 会调用该方法将配置传入进来
override def initialize(typeFilters: util.List[String], configParams: util.List[util.Map[Any, Any]]): Unit = {    this._configParams = configParams
}// 获取配置的sql语句
def sql = {
_configParams(0).get("sql").toString
}  def outputTable = {
_configParams(0).get("outputTable").toString
}//执行的主方法,大体是从上一个模块获取SQLContext(已经注册了对应的table),//然后根据该模块的配置,设置查询语句,最后得到一个新的dataFrame.// middleResult里的T其实是DStream,我们会传递到下一个模块,Output模块//params参数则是方便各个模块共享信息,这里我们将对应处理好的函数传递给下一个模块
override def result(alg: util.List[Processor[T]], ref: util.List[Strategy[T]], middleResult: util.List[T], params: util.Map[Any, Any]): util.List[T] = {    var dataFrame: DataFrame = null
val func = params.get("table").asInstanceOf[(RDD[String]) => SQLContext]
params.put("sql",(rdd:RDD[String])=>{      val sqlContext = func(rdd)
dataFrame = sqlContext.sql(sql)
dataFrame
})
middleResult
}
}

上面的代码就完成了一个SQL模块。那如果我们要完成一个自定义的.map函数呢?可类似下面的实现:

abstract class MapCompositor[T,U] extends Compositor[T]{  private var _configParams: util.List[util.Map[Any, Any]] = _  val logger = Logger.getLogger(classOf[SQLCompositor[T]].getName)  override def initialize(typeFilters: util.List[String], configParams: util.List[util.Map[Any, Any]]): Unit = {    this._configParams = configParams
}  override def result(alg: util.List[Processor[T]], ref: util.List[Strategy[T]], middleResult: util.List[T], params: util.Map[Any, Any]): util.List[T] = {    val dstream = middleResult(0).asInstanceOf[DStream[String]]    val newDstream = dstream.map(f=>parseLog(f))    List(newDstream.asInstanceOf[T])
}  def parseLog(line:String): U}class YourCompositor[T,U] extends MapCompositor[T,U]{ override def parseLog(line:String):U={
....your logical
}
}

同理你可以实现filter,repartition等其他函数。

总结

该方式提供了一套更为高层的API抽象,用户只要关注具体实现而无需关注Spark的使用。同时也提供了一套配置化系统,方便构建数据处理流程,并且复用原有的模块,支持使用SQL进行数据处理。

文/祝威廉(简书作者)
原文链接:http://www.jianshu.com/p/cd26a413cbd4
著作权归作者所有,转载请联系作者获得授权,并标注“简书作者”。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: