您的位置:首页 > 移动开发 > Android开发

[原创]Android系统中常用JAVA类源码浅析之HashMap

2016-04-26 18:51 483 查看
由于是浅析,所以我只分析常用的接口,注意是Android系统中的JAVA类,可能和JDK的源码有区别。

首先从构造函数开始,

/**
* Min capacity (other than zero) for a HashMap. Must be a power of two
* greater than 1 (and less than 1 << 30).
*/
private static final int MINIMUM_CAPACITY = 4;

/**
* Max capacity for a HashMap. Must be a power of two >= MINIMUM_CAPACITY.
*/
private static final int MAXIMUM_CAPACITY = 1 << 30;

/**
* An empty table shared by all zero-capacity maps (typically from default
* constructor). It is never written to, and replaced on first put. Its size
* is set to half the minimum, so that the first resize will create a
* minimum-sized table.
*/
private static final Entry[] EMPTY_TABLE
= new HashMapEntry[MINIMUM_CAPACITY >>> 1];

/**
* The default load factor. Note that this implementation ignores the
* load factor, but cannot do away with it entirely because it's
* mentioned in the API.
*
* <p>Note that this constant has no impact on the behavior of the program,
* but it is emitted as part of the serialized form. The load factor of
* .75 is hardwired into the program, which uses cheap shifts in place of
* expensive division.
*/
static final float DEFAULT_LOAD_FACTOR = .75F;

/**
* The hash table. If this hash map contains a mapping for null, it is
* not represented this hash table.
*/
transient HashMapEntry<K, V>[] table;

/**
* The entry representing the null key, or null if there's no such mapping.
*/
transient HashMapEntry<K, V> entryForNullKey;

/**
* The number of mappings in this hash map.
*/
transient int size;

/**
* Incremented by "structural modifications" to allow (best effort)
* detection of concurrent modification.
*/
transient int modCount;

/**
* The table is rehashed when its size exceeds this threshold.
* The value of this field is generally .75 * capacity, except when
* the capacity is zero, as described in the EMPTY_TABLE declaration
* above.
*/
private transient int threshold;

public HashMap() {
table = (HashMapEntry<K, V>[]) EMPTY_TABLE;
threshold = -1; // Forces first put invocation to replace EMPTY_TABLE
}

public HashMap(int capacity) {
if (capacity < 0) {
throw new IllegalArgumentException("Capacity: " + capacity);
}

if (capacity == 0) {
@SuppressWarnings("unchecked")
HashMapEntry<K, V>[] tab = (HashMapEntry<K, V>[]) EMPTY_TABLE;
table = tab;
threshold = -1; // Forces first put() to replace EMPTY_TABLE
return;
}

if (capacity < MINIMUM_CAPACITY) {
capacity = MINIMUM_CAPACITY;
} else if (capacity > MAXIMUM_CAPACITY) {
capacity = MAXIMUM_CAPACITY;
} else {
capacity = Collections.roundUpToPowerOfTwo(capacity);
}
makeTable(capacity);
}

public HashMap(int capacity, float loadFactor) {
this(capacity);

if (loadFactor <= 0 || Float.isNaN(loadFactor)) {
throw new IllegalArgumentException("Load factor: " + loadFactor);
}

/*
* Note that this implementation ignores loadFactor; it always uses
* a load factor of 3/4. This simplifies the code and generally
* improves performance.
*/
}


通过三个构造函数的源码,我们可以知道:

HashMap内部实际上使用HashMapEntry数组来实现的。

当调用new HashMap()时,会创建容量为2的HashMapEntry数组,并且threshold为-1。

当调用HashMap(int capacity)时,HashMap会将传入的capacity转换成最小的大于等于capacity的2的次方,比如:capacity=25,会转换成32。并且threshold为总容量的75%,threshold的作用是当entry的数量大于threshold时,进行扩容。

HashMap(int capacity, float loadFactory)实际上和HashMap(int capacity)是一样的,loadFactory参数未被使用(注意这是Android做的修改,实际上JDK中会使用这个参数)。

既然是HashMapEntry数组实现的,我们简单看下这个Entry什么样,

static class HashMapEntry<K, V> implements Entry<K, V> {
final K key;
V value;
final int hash;
HashMapEntry<K, V> next;

HashMapEntry(K key, V value, int hash, HashMapEntry<K, V> next) {
this.key = key;
this.value = value;
this.hash = hash;
this.next = next;
}
}


这里注意关注next属性,有一定经验的朋友肯定知道,这是单向链表的实现,所以实现HashMap的数组的每一项其实是一个单向链表的Head,继续往下看,

接下来我们分析下put(K key, V value)方法,

void addNewEntryForNullKey(V value) {
entryForNullKey = new HashMapEntry<K, V>(null, value, 0, null);
}

private V putValueForNullKey(V value) {
HashMapEntry<K, V> entry = entryForNullKey;
if (entry == null) {
addNewEntryForNullKey(value);
size++;
modCount++;
return null;
} else {
preModify(entry);
V oldValue = entry.value;
entry.value = value;
return oldValue;
}
}

private HashMapEntry<K, V>[] makeTable(int newCapacity) {
@SuppressWarnings("unchecked") HashMapEntry<K, V>[] newTable
= (HashMapEntry<K, V>[]) new HashMapEntry[newCapacity];
table = newTable;
threshold = (newCapacity >> 1) + (newCapacity >> 2); // 3/4 capacity
return newTable;
}

private HashMapEntry<K, V>[] doubleCapacity() {
HashMapEntry<K, V>[] oldTable = table;
int oldCapacity = oldTable.length;
if (oldCapacity == MAXIMUM_CAPACITY) {
return oldTable;
}
int newCapacity = oldCapacity * 2;
HashMapEntry<K, V>[] newTable = makeTable(newCapacity);
if (size == 0) {
return newTable;
}

for (int j = 0; j < oldCapacity; j++) {
/*
* Rehash the bucket using the minimum number of field writes.
* This is the most subtle and delicate code in the class.
*/
HashMapEntry<K, V> e = oldTable[j];
if (e == null) {
continue;
}
int highBit = e.hash & oldCapacity;
HashMapEntry<K, V> broken = null;
newTable[j | highBit] = e;
for (HashMapEntry<K, V> n = e.next; n != null; e = n, n = n.next) {
int nextHighBit = n.hash & oldCapacity;
if (nextHighBit != highBit) {
if (broken == null)
newTable[j | nextHighBit] = n;
else
broken.next = n;
broken = e;
highBit = nextHighBit;
}
}
if (broken != null)
broken.next = null;
}
return newTable;
}

@Override public V put(K key, V value) {
if (key == null) {
return putValueForNullKey(value);
}

int hash = Collections.secondaryHash(key);
HashMapEntry<K, V>[] tab = table;
int index = hash & (tab.length - 1);
for (HashMapEntry<K, V> e = tab[index]; e != null; e = e.next) {
if (e.hash == hash && key.equals(e.key)) {
preModify(e);
V oldValue = e.value;
e.value = value;
return oldValue;
}
}

// No entry for (non-null) key is present; create one
modCount++;
if (size++ > threshold) {
tab = doubleCapacity();
index = hash & (tab.length - 1);
}
addNewEntry(key, value, hash, index);
return null;
}

void addNewEntry(K key, V value, int hash, int index) {
table[index] = new HashMapEntry<K, V>(key, value, hash, table[index]);
}


从put(K key, V value)的源码我们可以得到如下信息:

当添加key为null的value时,会用单独的HashMapEntry entryForNullKey对象来储存。

entry数组的索引是通过hash算出来的:int index = hash & (tab.length - 1)。

当发生碰撞时(也就是算出的index上已经存在entry了),会首先检查是否是同一个hash和key,如果是则更新value,然后直接将old value返回。

新创建的entry会被设置成对应index上的链表Head。

当entry数量大于threshold(capacity的75%)时,对数组进行扩容,扩大为原来的2倍,并重新计算原数组中所有entry的index,然后复制到新数组中。

分析完put后,其他如get、remove、containsKey等接口就大同小异了,在此直接略过。

接下来我们看下Set<K> keySet()接口:

@Override public Set<K> keySet() {
Set<K> ks = keySet;
return (ks != null) ? ks : (keySet = new KeySet());
}

private final class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return newKeyIterator();
}
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
public boolean contains(Object o) {
return containsKey(o);
}
public boolean remove(Object o) {
int oldSize = size;
HashMap.this.remove(o);
return size != oldSize;
}
public void clear() {
HashMap.this.clear();
}
}

Iterator<K> newKeyIterator() { return new KeyIterator();   }

private final class KeyIterator extends HashIterator
implements Iterator<K> {
public K next() { return nextEntry().key; }
}


从源码中可以得出如下结论:

keySet返回的Set对象实际上和HashMap是强关联的,对Set接口的调用,实际上操作的还是HashMap。

Set中的iterator实际上也是实现自HashIterator。

entrySet()、valueSet()和keySet()的实现原理一样。

知道HashMap的实现原理后,我们就可以知道他的优缺点了:

优点:读写效率高,接近数组的索引方式。

缺陷:会占用大量的无效内存,为了减少碰撞,Entry数组的容量只能是2的N次幂,并且当entry数大于总容量的75%时就会扩容两倍。

如有问题,欢迎指出!

转载请注明出处。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: