您的位置:首页 > 其它

JVM系列2:垃圾收集器与内存分配策略

2016-04-10 15:47 309 查看
  这里从三个问题来帮你理解jvm的垃圾回收器和内存分配策略:

一.怎么判断哪些内存是垃圾?

1.引用计数法

2.根搜索算法,java采用的

二.什么时候回收?

  一个应用程序中那个线程运行有线程自身的优先级来决定的。垃圾回收线程几乎是所有线程中优先级最低的。

三.如何回收?-垃圾回收算法

1.标记-清理算法

2.复制算法

  我们首先一起来看一下复制算法的做法,复制算法将内存划分为两个区间,在任意时间点,所有动态分配的对象都只能分配在其中一个区间(称为活动区间),而另外一个区间(称为空闲区间)则是空闲的。

  当有效内存空间耗尽时,JVM将暂停程序运行,开启复制算法GC线程。接下来GC线程会将活动区间内的存活对象,全部复制到空闲区间,且严格按照内存地址依次排列,与此同时,GC线程将更新存活对象的内存引用地址指向新的内存地址。

  此时,空闲区间已经与活动区间交换,而垃圾对象现在已经全部留在了原来的活动区间,也就是现在的空闲区间。事实上,在活动区间转换为空间区间的同时,垃圾对象已经被一次性全部回收。

  听起来复杂吗?

  其实一点也不复杂,有了上一章的基础,相信各位理解这个算法不会费太多力气。LZ给各位绘制一幅图来说明问题,如下所示。



  其实这个图依然是上一章的例子,只不过此时内存被复制算法分成了两部分,下面我们看下当复制算法的GC线程处理之后,两个区域会变成什么样子,如下所示。



  可以看到,1和4号对象被清除了,而2、3、5、6号对象则是规则的排列在刚才的空闲区间,也就是现在的活动区间之内。此时左半部分已经变成了空闲区间,不难想象,在下一次GC之后,左边将会再次变成活动区间。

  很明显,复制算法弥补了标记/清除算法中,内存布局混乱的缺点。不过与此同时,它的缺点也是相当明显的。

  1、它浪费了一半的内存,这太要命了。

  2、如果对象的存活率很高,我们可以极端一点,假设是100%存活,那么我们需要将所有对象都复制一遍,并将所有引用地址重置一遍。复制这一工作所花费的时间,在对象存活率达到一定程度时,将会变的不可忽视。

  所以从以上描述不难看出,复制算法要想使用,最起码对象的存活率要非常低才行,而且最重要的是,我们必须要克服50%内存的浪费。

3.标记-整理算法

  标记/整理算法与标记/清除算法非常相似,它也是分为两个阶段:标记和整理。下面LZ给各位介绍一下这两个阶段都做了什么。

  标记:它的第一个阶段与标记/清除算法是一模一样的,均是遍历GC Roots,然后将存活的对象标记。

  整理:移动所有存活的对象,且按照内存地址次序依次排列,然后将末端内存地址以后的内存全部回收。因此,第二阶段才称为整理阶段。

  它GC前后的图示与复制算法的图非常相似,只不过没有了活动区间和空闲区间的区别,而过程又与标记/清除算法非常相似,我们来看GC前内存中对象的状态与布局,如下图所示。



  这张图其实与标记/清楚算法一模一样,只是LZ为了方便表示内存规则的连续排列,加了一个矩形表示内存区域。倘若此时GC线程开始工作,那么紧接着开始的就是标记阶段了。此阶段与标记/清除算法的标记阶段是一样一样的,我们看标记阶段过后对象的状态,如下图。



  没什么可解释的,接下来,便应该是整理阶段了。我们来看当整理阶段处理完以后,内存的布局是如何的,如下图。



  可以看到,标记的存活对象将会被整理,按照内存地址依次排列,而未被标记的内存会被清理掉。如此一来,当我们需要给新对象分配内存时,JVM只需要持有一个内存的起始地址即可,这比维护一个空闲列表显然少了许多开销。

  不难看出,标记/整理算法不仅可以弥补标记/清除算法当中,内存区域分散的缺点,也消除了复制算法当中,内存减半的高额代价,可谓是一举两得,一箭双雕,一石两鸟,一。。。。一女两男?

  不过任何算法都会有其缺点,标记/整理算法唯一的缺点就是效率也不高,不仅要标记所有存活对象,还要整理所有存活对象的引用地址。从效率上来说,标记/整理算法要低于复制算法。

4.分代收集算法

  当前的商业虚拟机的垃圾收集都采用“分代收集”算法。这种算法并没有什么新的意思,只是根据对象的存活周期的不同将内存划分为几块。一般是把java堆分为新生代和老生代,这样就可以根据各个年代的特点采用最适合的收集算法。在新生代中,每次垃圾回收时都发现有大批对象死去,只有少量存活,那就选用复制算法,只需要付出少量存活对象的复制成本就可以完成收集。而老生代中因为对象存活率高、没有额外空间对它进行分配担保,就必须使用“标记-清理”或“标记-整理”算法来进行回收。

5.算法对比

  这里LZ给各位总结一下三个算法的共同点以及它们各自的优势劣势,让各位对比一下,想必会更加清晰。

  它们的共同点主要有以下两点。

  1、三个算法都基于根搜索算法去判断一个对象是否应该被回收,而支撑根搜索算法可以正常工作的理论依据,就是语法中变量作用域的相关内容。因此,要想防止内存泄露,最根本的办法就是掌握好变量作用域,而不应该使用前面内存管理杂谈一章中所提到的C/C++式内存管理方式。

  2、在GC线程开启时,它们都要暂停应用程序(stop the world)。

  它们的区别LZ按照下面几点来给各位展示。(>表示前者要优于后者,=表示两者效果一样)

  效率:复制算法>标记/整理算法>标记/清除算法。

  内存整齐度:复制算法=标记/整理算法>标记/清除算法。

  内存利用率:标记/整理算法=标记/清除算法>复制算法。

  可以看到标记/清除算法是比较落后的算法了,但是后两种算法却是在此基础上建立的,俗话说“吃水不忘挖井人”,因此各位也莫要忘记了标记/清除这一算法前辈。

  难道就没有一种最优算法吗?

  当然是没有的,这个世界是公平的,任何东西都有两面性,试想一下,你怎么可能找到一个又漂亮又勤快又有钱又通情达理,性格又合适,家境也合适,身高长相等等等等都合适的女人?就算你找到了,至少有一点这个女人也肯定不满足,那就是多半不会恰巧又爱上了与LZ相似的各位苦逼猿友们。你是不是想说你比LZ强太多了,那LZ只想对你说,高富帅是不会爬在电脑前看技术文章的,0.0。

  但是古人就是给力,古人说了,找媳妇不一定要找最好的,而是要找最合适的,听完这句话,瞬间感觉世界美好了许多。

  算法也是一样的,没有最好的算法,只有最合适的算法。

  既然这三种算法都各有缺陷,高人们自然不会容许这种情况发生。因此,高人们提出可以根据对象的不同特性,使用不同的算法处理,类似于萝卜白菜各有所爱的原理。于是奇迹发生了,高人们终于找到了GC算法中的神级算法—–分代搜集算法。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: