您的位置:首页 > 其它

多元分析的处理方法

2016-04-02 12:31 344 查看

如何处理多元分析的积分问题

直接使用多元函数积分

考虑如下的例子选自PRML3.13:

对于\(t\in\mathcal{R}^1\)和\(w\in\mathcal{R}^d\)求下列积分

\(\int \mathcal{N}(t\,\lvert\,\phi^T(x)w,\,\beta^{-1})\cdot\mathcal{N}(w\,\lvert\,m_N,\,\beta^{-1}S_N)\,dw\)

作如下整理:

\(\frac{1}{(2\pi)^{\frac{1}{2}}(\beta^{-1})^{\frac{1}{2}}}\frac{1}{(2\pi)^{\frac{d}{2}} \lvert \beta^{-1}S_N\lvert^{\frac{1}{2}}}\int e^{-\frac{\beta}{2}(t^2+m_N^TS_N^{-1}m_N+w^T(S_N^{-1}+\phi(x)\phi^T(x))w-2(m_N^TS_N^{-1}+t\phi^T(x))w)}\)

令\(P_N^{-1} = S_N^{-1}+\phi(x)\phi^T(x)\), \(w'=m_N^TS_N^{-1}+t\phi^T(x)\),则有:

原式$ = \frac{1}{(2\pi)^{\frac{1}{2}}(\beta^{-1})^{\frac{1}{2}}}\frac{\lvert \beta^{-1}P_N\lvert^{\frac{1}{2}}}{\lvert \beta^{-1}S_N\lvert^{\frac{1}{2}}}e^{-\frac{\beta}{2}(t^2+m_N^TS_N^{-1}m_N-w'^TP_Nw')}\int\mathcal{N}(w,\lvert,P_Nw',,\beta^{-1}P_N),dw = \frac{1}{(2\pi)^{\frac{1}{2}}(\beta^{-1})^{\frac{1}{2}}}\frac{\lvert \beta^{-1}P_N\lvert^{\frac{1}{2}}}{\lvert \beta^{-1}S_N\lvert^{\frac{1}{2}}}e^{-\frac{\beta}{2}(t^2+m_N^TS_N^{-1}m_N-w'^TP_Nw')}$

下面我们单独计算一下\(w'^TP_Nw' = (m_N^T+t\phi^T(x))(S_N^{-1}+\phi(x)\phi^T(x))^{-1}(S_N^{-1}m_N+t\phi(x)) = (m_N^T+t\phi^T(x)S_N)(I+\phi(x)\phi^T(x)S_N)^{-1}(S_N^{-1}m_N+t\phi(x))\)

由Sherman-Morrision-Woodbury公式,

\((I+\phi(x)\phi^T(x)S_N)^{-1} = I - \frac{\phi(x)\phi^T(x)S_N}{1+\phi^T(x)S_N\phi(x)}\)

令\(\gamma = \phi^T(x)S_N\phi(x)\)上式化为:

\((m_N^T+t\phi^T(x)S_N)(I+\phi(x)\phi^T(x)S_N)^{-1}(S_N^{-1}m_N+t\phi(x)) = m_N^TS_N^{-1}m_N + t^2 - \frac{(t-\phi^T(x)m_N)^2}{1+\gamma}\)

所以,原式$ = \frac{1}{(2\pi)^{\frac{1}{2}}(\beta^{-1})^{\frac{1}{2}}}\frac{\lvert \beta^{-1}P_N\lvert^{\frac{1}{2}}}{\lvert \beta^{-1}S_N\lvert^{\frac{1}{2}}}e^{-\frac{\beta}{2}(t^2+m_N^TS_N^{-1}m_N-w'^TP_Nw')} = \frac{1}{(2\pi)^{\frac{1}{2}}(\beta^{-1})^{\frac{1}{2}}}\frac{1}{\lvert I+\phi(x)\phi^T(x)S_N \lvert^{\frac{1}{2}}}e^{-\frac{\beta}{2(1+\gamma)}(t-\phi^T(x)m_N)^2}$

下面考察一下\(\lvert I+\phi(x)\phi^T(x)S_N \lvert\)

\(\lvert I+\phi(x)\phi^T(x)S_N \lvert = \prod\limits_{i = 1}^d\lambda_i\)

我们注意到如下事实,

\((I+\phi(x)\phi^T(x)S_N)\phi(x) = (1+\gamma)\phi(x)\),所以\(1+\gamma\)是\(I+\phi(x)\phi^T(x)S_N\)的特征根

如果\(\phi^T(x)\varphi = 0\),

则\((I+\phi(x)\phi^T(x)S_N)\varphi = \varphi + \phi(x)\varphi^TS_N\phi(x) = \varphi\),显然和\(\phi(x)\)正交的向量有\(d-1\)个,所以1是\(I+\phi(x)\phi^T(x)S_N\)的\(d-1\)维的特征根。

综合这两点,可以得出\(\lvert I+\phi(x)\phi^T(x)S_N \lvert = \prod\limits_{i = 1}^d\lambda_i = (1+\gamma)\)

所以,原式化成\(\frac{1}{(2\pi)^{\frac{1}{2}}(\beta^{-1}(1+\gamma))^{\frac{1}{2}}}e^{-\frac{\beta}{2(1+\gamma)}(t-\phi^T(x)m_N)^2} = \mathcal{N}(t\,\lvert\,\phi^T(x)m_N,\ \beta^{-1}(1+\phi^T(x)S_N\phi(x))\)

总结:可以看出,虽然我们在初等微积分里面经常强调要手算,但是对于以上的多元情况的概率积分而言,情况显然已经非常的复杂,虽然手算可以算出来,但是非常的麻烦和浪费时间,得不偿失。而且,为了得到某些结果,往往需要具有一定的观察力和经验积累,例如上面的\(\lvert I+\phi(x)\phi^T(x)S_N \lvert\)的计算需要我们从其特征根入手进行转换,\((I+\phi(x)\phi^T(x)S_N)^{-1}\)的计算就需要运用公式,如果对这些不是很熟悉,想要算出最终结果几乎是不可能的。而且,我们可以发现,即使要从最终结果反推回去也是很困难的,必须要有敢于尝试的决心和计算下去的毅力才行。当然,上面相同的处理过程也适用于条件分布公式的计算。

利用公式处理

另外一种做法可能更具有指导意义,就是灵活运用各类公式,例如对于上面的例子,我们可以作如下变形:

\(\int \mathcal{N}(t\,\lvert\,\phi^T(x)w,\,\beta^{-1})\cdot\mathcal{N}(w\,\lvert\,m_N,\,\beta^{-1}S_N)\,dw\) = \(\int P(t|w)P(w)dw = P(t)\)

也就是上式变成了一个利用条件分布求边缘分布的问题,那么利用如下的一组公式,可以快速求解:

\[P(x) = \mathcal{N}(x\,\lvert\,\mu,\ \Lambda^{-1})\tag{1}\]

\[P(y\lvert x) = \mathcal{N}(y\,\lvert\,Ax+b,\ L^{-1})\tag{2}\]

\[P(y) = \mathcal{N}(y\,\lvert\,A\mu+b,\ L^{-1}+A\Lambda^{-1}A^T)\tag{3}\]

\[P(x\lvert y) = \mathcal{N}(x\,\lvert\,\Sigma\{A^TL(y-b)+\Lambda\mu\},\ \Sigma)\tag{4}\]

with

\[\Sigma = (\Lambda+A^TLA)^{-1}\].
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: