您的位置:首页 > 其它

图像(层)正常混合模式详解(上)

2016-04-01 00:00 411 查看
摘要: 图像合成,处理

在图像处理过程中,图像的合成操作是使用频率最高的,如图像显示、图像拷贝、图像拼接以及的图层拼合叠加等。
图像合成,其实也就是图像像素颜色的混合,在Photoshop中,颜色混合是个很复杂的东西,不同的混合模式,将产生不同的合成效果,如果将之全部研究透彻,估计就得写一本书。因此,本文只谈谈最基本的图像合成,也就是Photoshop中的正常混合模式。
只要接触过图像处理的,都知道有个图像像素混合公式:
1)dstRGB = srcRGB * alpha + dstRGB * (1 - alpha)
其中,dstRGB为目标图像素值;srcRGB为源图像素值;alpha为源图像素值混合比例(不透明度,范围0 - 1)。
其实,这个像素混合公式有很大局限性,只适合不含Alpha信息的图像。
要处理包括带Alpha通道图像(层)的混合,其完整的公式应该是:
2-1)srcRGB = srcRGB * srcAlpha * alpha / 255 (源图像素预乘转换为PARGB)
2-2)dstRGB = dstRGB * dstAlpha / 255 (目标图像素预乘转换为PARGB)
2-3)dstRGB = dstRGB + srcRGB - dstRGB * srcAlpha * alpha / 255 (源图像素值与目标图像素值混合)
2-4)dstAlpha = dstAlpha + srcAlpha * alpha - dstAlpha * srcAlpha * alpha / 255 (混合后的目标图Alpha通道值)
2-5)dstRGB = dstRGB * 255 / dstAlpha (混合后的目标图像素转换为ARGB)
其中,dstRGB为目标图像素值;srcRGB为源图像素值;dstAlpha为目标图Alpha通道值;srcAlpha为源图Alpha通道值;dstARGB为含Alpha目标图像素值;alpha为源图像素值混合比例(不透明度,范围0 - 1)。
将公式2中的2-1式代入2-3式,简化可得:
3-1)dstRGB = dstRGB * dstAlpha / 255
3-2)dstRGB = dstRGB + (srcRGB - dstRGB) * srcAlpha * alpha / 255
3-3)dstAlpha = dstAlpha + srcAlpha * alpha - dstAlpha * srcAlpha * alpha / 255
3-4)dstRGB = dstRGB * 255 / dstAlpha
当dstAlpha=srcAlpha=255时,公式3中3-1式、3-3式和3-4式没有意义,3-2式也变化为:
4)dstRGB = dstRGB + (srcRGB - dstRGB) * alpha
不难看出,公式4是公式1的变形。因此,公式1只是公式3(或者公式2)在目标图和源图都不含Alpha信息(或者Alpha=255)情况下的一个特例而已。
当公式4中的alpha=1时,目标图像素等于源图像素,所以,本文前面说图像拷贝其实也是图像合成的范畴。
通过上面较详细的分析,可以看出,即使是最基本正常图像混合模式也是很复杂的。其实,上面还不是完整的分析,因为按照目标图Alpha信息、源图Alpha信息以及源图合成比例等三个要素的完全的排列组合,最多可以派生8个公式。
下面就按正常混合模式的全部8种情况(有2项重合,实际为7种情况)来分别进行代码实现,也可完善和补充上面的文字叙述:

//---------------------------------------------------------------------------

// 定义ARGB像素结构
typedef union
{
ARGB Color;
struct
{
BYTE Blue;
BYTE Green;
BYTE Red;
BYTE Alpha;
};
}ARGBQuad, *PARGBQuad;

typedef struct
{
INT width;
INT height;
PARGBQuad dstScan0;
PARGBQuad srcScan0;
INT dstOffset;
INT srcOffset;
}ImageCpyData, *PImageCpyData;

typedef VOID (*MixerProc)(PImageCpyData, INT);

#define PixelAlphaFlag 0x10000
//---------------------------------------------------------------------------
// source alpha = false, dest alpha = false, alpha < 255
static VOID Mixer0(PImageCpyData cpyData, INT alpha)
{
PARGBQuad pd = cpyData->dstScan0;
PARGBQuad ps = cpyData->srcScan0;
for (INT y = 0; y < cpyData->height; y ++, pd += cpyData->dstOffset, ps += cpyData->srcOffset)
{
for (INT x = 0; x < cpyData->width; x ++, pd ++, ps ++)
{
pd->Blue += (((ps->Blue - pd->Blue) * alpha + 127) / 255);
pd->Green += (((ps->Green - pd->Green) * alpha + 127) / 255);
pd->Red += (((ps->Red - pd->Red) * alpha + 127) / 255);
}
}
}
//---------------------------------------------------------------------------
// source alpha = false, dest alpha = false, alpha = 255
// source alpha = false, dest alpha = true, alpha = 255
static VOID Mixer1(PImageCpyData cpyData, INT alpha)
{
ARGB *pd = (ARGB*)cpyData->dstScan0;
ARGB *ps = (ARGB*)cpyData->srcScan0;
for (INT y = 0; y < cpyData->height; y ++, pd += cpyData->dstOffset, ps += cpyData->srcOffset)
{
for (INT x = 0; x < cpyData->width; x ++, *pd ++ = *ps ++);
}
}
//---------------------------------------------------------------------------
// source alpha = false, dest alpha = true, alpha < 255
static VOID Mixer2(PImageCpyData cpyData, INT alpha)
{
PARGBQuad pd = cpyData->dstScan0;
PARGBQuad ps = cpyData->srcScan0;
for (INT y = 0; y < cpyData->height; y ++, pd += cpyData->dstOffset, ps += cpyData->srcOffset)
{
for (INT x = 0; x < cpyData->width; x ++, pd ++, ps ++)
{
pd->Blue = (pd->Blue * pd->Alpha + 127) / 255;
pd->Green = (pd->Green * pd->Alpha + 127) / 255;
pd->Red = (pd->Red * pd->Alpha + 127) / 255;

pd->Blue += (((ps->Blue - pd->Blue) * alpha + 127) / 255);
pd->Green += (((ps->Green - pd->Green) * alpha + 127) / 255);
pd->Red += (((ps->Red - pd->Red) * alpha + 127) / 255);
pd->Alpha += (alpha - (pd->Alpha * alpha + 127) / 255);

pd->Blue = pd->Blue * 255 / pd->Alpha;
pd->Green = pd->Green * 255 / pd->Alpha;
pd->Red = pd->Red * 255 / pd->Alpha;
}
}
}
//---------------------------------------------------------------------------
// source alpha = true, dest alpha = false, alpha < 255
static VOID Mixer4(PImageCpyData cpyData, INT alpha)
{
PARGBQuad pd = cpyData->dstScan0;
PARGBQuad ps = cpyData->srcScan0;
for (INT y = 0; y < cpyData->height; y ++, pd += cpyData->dstOffset, ps += cpyData->srcOffset)
{
for (INT x = 0; x < cpyData->width; x ++, pd ++, ps ++)
{
INT alpha0 = (alpha * ps->Alpha + 127) / 255;
pd->Blue += (((ps->Blue - pd->Blue) * alpha0 + 127) / 255);
pd->Green += (((ps->Green - pd->Green) * alpha0 + 127) / 255);
pd->Red += (((ps->Red - pd->Red) * alpha0 + 127) / 255);
}
}
}
//---------------------------------------------------------------------------
// source alpha = true, dest alpha = false, alpha = 255
static VOID Mixer5(PImageCpyData cpyData, INT alpha)
{
PARGBQuad pd = cpyData->dstScan0;
PARGBQuad ps = cpyData->srcScan0;
for (INT y = 0; y < cpyData->height; y ++, pd += cpyData->dstOffset, ps += cpyData->srcOffset)
{
for (INT x = 0; x < cpyData->width; x ++, pd ++, ps ++)
{
pd->Blue += (((ps->Blue - pd->Blue) * ps->Alpha + 127) / 255);
pd->Green += (((ps->Green - pd->Green) * ps->Alpha + 127) / 255);
pd->Red += (((ps->Red - pd->Red) * ps->Alpha + 127) / 255);
}
}
}
//---------------------------------------------------------------------------
// source alpha = true, dest alpha = true, alpha < 255
static VOID Mixer6(PImageCpyData cpyData, INT alpha)
{
PARGBQuad pd = cpyData->dstScan0;
PARGBQuad ps = cpyData->srcScan0;
for (INT y = 0; y < cpyData->height; y ++, pd += cpyData->dstOffset, ps += cpyData->srcOffset)
{
for (INT x = 0; x < cpyData->width; x ++, pd ++, ps ++)
{
INT alpha0 = (alpha * ps->Alpha + 127) / 255;
if (alpha0)
{
pd->Blue = (pd->Blue * pd->Alpha + 127) / 255;
pd->Green = (pd->Green * pd->Alpha + 127) / 255;
pd->Red = (pd->Red * pd->Alpha + 127) / 255;

pd->Blue += (((ps->Blue - pd->Blue) * alpha0 + 127) / 255);
pd->Green += (((ps->Green - pd->Green) * alpha0 + 127) / 255);
pd->Red += (((ps->Red - pd->Red) * alpha0 + 127) / 255);
pd->Alpha += (alpha0 - (pd->Alpha * alpha0 + 127) / 255);

pd->Blue = pd->Blue * 255 / pd->Alpha;
pd->Green = pd->Green * 255 / pd->Alpha;
pd->Red = pd->Red * 255 / pd->Alpha;
}
}
}
}
//---------------------------------------------------------------------------
// source alpha = true, dest alpha = true, alpha = 255
static VOID Mixer7(PImageCpyData cpyData, INT alpha)
{
PARGBQuad pd = cpyData->dstScan0;
PARGBQuad ps = cpyData->srcScan0;
for (INT y = 0; y < cpyData->height; y ++, pd += cpyData->dstOffset, ps += cpyData->srcOffset)
{
for (INT x = 0; x < cpyData->width; x ++, pd ++, ps ++)
{
if (ps->Alpha)
{
pd->Blue = (pd->Blue * pd->Alpha + 127) / 255;
pd->Green = (pd->Green * pd->Alpha + 127) / 255;
pd->Red = (pd->Red * pd->Alpha + 127) / 255;

pd->Blue += (((ps->Blue - pd->Blue) * ps->Alpha + 127) / 255);
pd->Green += (((ps->Green - pd->Green) * ps->Alpha + 127) / 255);
pd->Red += (((ps->Red - pd->Red) * ps->Alpha + 127) / 255);
pd->Alpha += (ps->Alpha - (pd->Alpha * ps->Alpha + 127) / 255);

pd->Blue = pd->Blue * 255 / pd->Alpha;
pd->Green = pd->Green * 255 / pd->Alpha;
pd->Red = pd->Red * 255 / pd->Alpha;
}
}
}
}
//---------------------------------------------------------------------------

VOID ImageMixer(BitmapData *dest, CONST BitmapData *source, INT alpha)
{
if (alpha <= 0) return;
if (alpha > 255) alpha = 255;

ImageCpyData data;
data.width = (INT)(dest->Width < source->Width? dest->Width : source->Width);
data.height = (INT)(dest->Height < source->Height? dest->Height : source->Height);
data.dstOffset = (dest->Stride >> 2) - data.width;
data.srcOffset = (source->Stride >> 2) - data.width;
data.dstScan0 = (PARGBQuad)dest->Scan0;
data.srcScan0 = (PARGBQuad)source->Scan0;

MixerProc proc[] = {Mixer0, Mixer1, Mixer2, Mixer1, Mixer4, Mixer5, Mixer6, Mixer7};
INT index = (alpha / 255) | ((dest->Reserved >> 16) << 1) | ((source->Reserved >> 16) << 2);
proc[index](&data, alpha);
}
//---------------------------------------------------------------------------
函数ImageMixer有三个参数,分别为目标图数据结构(借用GDI+的BitmapData结构)指针、源图数据结构指针和源图像素混合比例(不透 明度,取值范围为0 - 255,前面的公式中的取值范围0 - 1是方便描述)。函数体中的proc数组包括了图像混合的全部8种情况的子函数,而index则按混合比例、目标图Alpha信息和源图Alpha信息组 合成子函数调用下标值(Alpha信息在BitmapData结构的保留字段中)。
当然,在实际的运用中,全部8种情况似乎是多了点,可根据情况进行适当合并取舍,以兼顾代码的复杂度和执行效率。下面是我认为比较合理的精简版ImageMixer函数:

VOID ImageMixer(BitmapData *dest, CONST BitmapData *source, INT alpha)
{
if (alpha <= 0) return;
if (alpha > 255) alpha = 255;

ImageCpyData data;
data.width = (INT)(dest->Width < source->Width? dest->Width : source->Width);
data.height = (INT)(dest->Height < source->Height? dest->Height : source->Height);
data.dstOffset = (dest->Stride >> 2) - data.width;
data.srcOffset = (source->Stride >> 2) - data.width;
data.dstScan0 = (PARGBQuad)dest->Scan0;
data.srcScan0 = (PARGBQuad)source->Scan0;

if (alpha == 255 && !(source->Reserved & PixelAlphaFlag))
Mixer1(&data, alpha);
else if (dest->Reserved & PixelAlphaFlag)
Mixer6(&data, alpha);
else
Mixer4(&data, alpha);
}
//---------------------------------------------------------------------------
这个ImageMixer函数只保留了3个调用子函数,其中,Mixer6是完全的正常混合模式,即前面公式3的实现;Mixer4为对不含Alpha信息目标图的混合,即在公式4基础上稍稍扩充了的情况;而Mixer1则为拷贝模式。
下面是采用BCB2007和GDI+调用ImageMixer函数的例子:

//---------------------------------------------------------------------------

// 锁定GDI+位位图扫描线到data
FORCEINLINE
VOID LockBitmap(Gdiplus::Bitmap *bmp, BitmapData *data)
{
Gdiplus::Rect r(0, 0, bmp->GetWidth(), bmp->GetHeight());
BOOL hasAlpha = bmp->GetPixelFormat() & PixelFormatAlpha;
bmp->LockBits(&r, ImageLockModeRead | ImageLockModeWrite,
PixelFormat32bppARGB, data);
if (hasAlpha) data->Reserved |= PixelAlphaFlag;
}
//---------------------------------------------------------------------------

// GDI+位图扫描线解锁
FORCEINLINE
VOID UnlockBitmap(Gdiplus::Bitmap *bmp, BitmapData *data)
{
data->Reserved &= 0xff;
bmp->UnlockBits(data);
}
//---------------------------------------------------------------------------

void __fastcall TForm1::Button1Click(TObject *Sender)
{

Gdiplus::Bitmap *dest = new Gdiplus::Bitmap(L"d:\\xmas_011.png");
Gdiplus::Bitmap *source = new Gdiplus::Bitmap(L"d:\\Apple.png");

Gdiplus::Graphics *g = new Gdiplus::Graphics(Canvas->Handle);
g->DrawImage(dest, 0, 0);
g->DrawImage(source, dest->GetWidth(), 0);

BitmapData dst, src;
LockBitmap(dest, &dst);
LockBitmap(source, &src);
ImageMixer(&dst, &src, 192);
UnlockBitmap(source, &src);
UnlockBitmap(dest, &dst);

g->DrawImage(dest, dest->GetWidth() << 1, 0);

delete g;
delete source;
delete dest;
}
//---------------------------------------------------------------------------
下面是运行效果截图:



左边是目标图,中间是源图,右边是源图按不透明度192进行的正常混合。

本文代码未作过多优化。
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  图像处理