您的位置:首页 > 其它

hdu 1060 Leftmost Digit

2016-03-24 16:19 489 查看

Leftmost Digit

Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 15851 Accepted Submission(s): 6184


[align=left]Problem Description[/align]
Given a positive integer N, you should output the leftmost digit of N^N.

[align=left]Input[/align]
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).

[align=left]Output[/align]
For each test case, you should output the leftmost digit of N^N.

[align=left]Sample Input[/align]

2

3

4

[align=left]Sample Output[/align]

2

2

Hint

In the first case, 3 * 3 * 3 = 27, so the leftmost digit is 2.
In the second case, 4 * 4 * 4 * 4 = 256, so the leftmost digit is 2.

题意:输入n 输出n^n的结果的个位数

题解:将n^n用科学计数法表示为n^n=a*10^x (如274=2.74*10^2)将等式两边都取对数的lg n^n=lg(a*10^x)
n*lgn=lga+x*lg(10) == n*lgn=lga+x 所以lga=n*lgn-x 由指对互换得a=10^(n*lgn-x) x为n^n的位数减一,如1234 ==n^n则x=3 同样有指对互化得lg(n^n)=x可化为10^x=n^n,所以x为 lg(n^n)向下取整

#include<stdio.h>
#include<string.h>
#include<cstdio>
#include<string>
#include<math.h>
#include<algorithm>
#define LL long long
#define PI atan(1.0)*4
#define DD double
#define MAX 30000
#define mod 100
#define dian 1.000000011
#define INF 0x3f3f3f
using namespace std;
int main()
{
LL n,m,j,i,t,k;
scanf("%lld",&t);
DD sum;
while(t--)
{
scanf("%lld",&n);
sum=(long DD)n*log10(n);
sum-=(LL)sum;
k=pow(10,sum);
printf("%lld\n",k);
}
return 0;
}


  
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: