您的位置:首页 > 其它

Reeb graph

2016-03-04 11:00 1271 查看
From Wikipedia, the free encyclopedia








Reeb graph of the height function on the torus.

Reeb graph (named after Georges
Reeb) is a mathematical object reflecting the evolution of the level
sets of a real-valued function on a manifold.[1] Originally
introduced as a tool inMorse theory,[2] Reeb
graphs found a wide variety of applications in computational geometry and computer
graphics, including computer aided geometric
design, topology-based shape
matching,[3]topological
simplification and cleaning, surface segmentation and parametrization, and efficient computation of level sets. In a special case of a function on a flat space, the Reeb graph forms a polytree and
is also called a contour tree.[4]


Formal definition[edit]

Given a topological
space X and a continuous function f: X → R,
define an equivalence relation ∼ on X where p∼q whenever p and q belong
to the same connected component of a single level
set f−1(c) for some real c. The Reeb graph is the quotient
space X /∼ endowed with the quotient topology.


Description for Morse functions[edit]

If f is a Morse
function with distinct critical values, the Reeb graph can be described more explicitly.
Its nodes, or vertices, correspond to the critical level sets f−1(c). The pattern in which the arcs, or edges, meet at the nodes/vertices reflects the change in topology of the level set f−1(t)
as t passes through the critical value c. For example, if c is a minimum or a maximum of f, a component is created or destroyed; consequently, an arc originates or terminates at the corresponding node, which has degree 1.
If c is a saddle point of index 1 and two components of f−1(t)
merge at t = c as t increases, the corresponding vertex of the Reeb graph has degree 3 and looks like the letter "Y"; the same reasoning applies if the index of c is dim X−1 and a component of f−1(c)
splits into two.


References[edit]

Jump
up^
 Harish Doraiswamy, Vijay Natarajan, Efficient
algorithms for computing Reeb graphs, Computational Geometry 42 (2009) 606–616
Jump
up^
 G. Reeb, Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique, C. R. Acad. Sci. Paris 222 (1946) 847–849
Jump
up^
 Tung, Tony; Schmitt, Francis (2005). "The
Augmented Multiresolution Reeb Graph Approach for Content-Based Retrieval of 3D Shapes". International Journal of Shape Modeling (IJSM) 11 (1): 91–120.
Jump
up^
 Carr, Hamish; Snoeyink, Jack; Axen, Ulrike (2000), "Computing contour trees in all dimensions", Proc.
11th ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 918–926.

From Wikipedia, the free encyclopedia








Reeb graph of the height function on the torus.

Reeb graph (named after Georges
Reeb) is a mathematical object reflecting the evolution of the level
sets of a real-valued function on a manifold.[1] Originally
introduced as a tool inMorse theory,[2] Reeb
graphs found a wide variety of applications in computational geometry and computer
graphics, including computer aided geometric
design, topology-based shape
matching,[3]topological
simplification and cleaning, surface segmentation and parametrization, and efficient computation of level sets. In a special case of a function on a flat space, the Reeb graph forms a polytree and
is also called a contour tree.[4]


Formal definition[edit]

Given a topological
space X and a continuous function f: X → R,
define an equivalence relation ∼ on X where p∼q whenever p and q belong
to the same connected component of a single level
set f−1(c) for some real c. The Reeb graph is the quotient
space X /∼ endowed with the quotient topology.


Description for Morse functions[edit]

If f is a Morse
function with distinct critical values, the Reeb graph can be described more explicitly.
Its nodes, or vertices, correspond to the critical level sets f−1(c). The pattern in which the arcs, or edges, meet at the nodes/vertices reflects the change in topology of the level set f−1(t)
as t passes through the critical value c. For example, if c is a minimum or a maximum of f, a component is created or destroyed; consequently, an arc originates or terminates at the corresponding node, which has degree 1.
If c is a saddle point of index 1 and two components of f−1(t)
merge at t = c as t increases, the corresponding vertex of the Reeb graph has degree 3 and looks like the letter "Y"; the same reasoning applies if the index of c is dim X−1 and a component of f−1(c)
splits into two.


References[edit]

Jump
up^
 Harish Doraiswamy, Vijay Natarajan, Efficient
algorithms for computing Reeb graphs, Computational Geometry 42 (2009) 606–616
Jump
up^
 G. Reeb, Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique, C. R. Acad. Sci. Paris 222 (1946) 847–849
Jump
up^
 Tung, Tony; Schmitt, Francis (2005). "The
Augmented Multiresolution Reeb Graph Approach for Content-Based Retrieval of 3D Shapes". International Journal of Shape Modeling (IJSM) 11 (1): 91–120.
Jump
up^
 Carr, Hamish; Snoeyink, Jack; Axen, Ulrike (2000), "Computing contour trees in all dimensions", Proc.
11th ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 918–926.
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: