您的位置:首页 > 编程语言 > C语言/C++

C++ 128位 AES加密算法

2016-03-03 16:15 543 查看
转自:xelz’s blog

声明文件 AES.h

#ifndef _AES_H_
#define _AES_H_

#include <Windows.h>

class CAES
{
public:
/*
* 功  能:初始化
* 参  数:key — 密钥,必须是16字节(128bit)
*/
CAES(const BYTE key[16]);
~CAES();

/*
* 功  能:加密,加密后的字节串长度只会是16字节的整数倍
* 参  数:src_data — 需要加密的字节串,不允许为空
*        src_len — src_data长度,不允许为0
*        dst_data — 指向加密后字节串的指针,如果该指针为空或者dst_len小于加密后所需的字节长度,函数内部会自动分配空间
*        dst_len — dst_data长度
*        release_dst — 函数内部自动分配空间时是否删除现有空间
* 返回值: 加密字节串长度
*/
size_t Encrypt(IN const void* const src_data, IN size_t src_len, OUT void*& dst_data, IN size_t dst_len, IN bool release_dst = false);

/*
* 功  能:解密
* 参  数:data — [IN] 需要解密的字节串,不允许为空
*                [OUT]解密后的字节串
*        len — 字节串长度,该长度必须是16字节(128bit)的整数倍
*/
void Decrypt(IN OUT void* data, IN size_t len);

/*
* 功  能: 获取待加密的字节串被加密后字节长度
* 参  数: src_len — 需要加密的字节串长度
* 返回值: 加密后字节串长度
*/
size_t GetEncryptDataLen(IN size_t src_len) const;

private:
// 对data前16字节进行加密
void Encrypt(BYTE* data);
// 对data前16字节进行解密
void Decrypt(BYTE* data);
// 密钥扩展
void KeyExpansion(const BYTE* key);
BYTE FFmul(BYTE a, BYTE b);
// 轮密钥加变换
void AddRoundKey(BYTE data[][4], BYTE key[][4]);
// 加密字节替代
void EncryptSubBytes(BYTE data[][4]);
// 解密字节替代
void DecryptSubBytes(BYTE data[][4]);
// 加密行移位变换
void EncryptShiftRows(BYTE data[][4]);
// 解密行移位变换
void DecryptShiftRows(BYTE data[][4]);
// 加密列混淆变换
void EncryptMixColumns(BYTE data[][4]);
// 解密列混淆变换
void DecryptMixColumns(BYTE data[][4]);

private:
BYTE* encrypt_permutation_table_;   // 加密置换表
BYTE* decrypt_permutation_table_;   // 解密置换表
BYTE round_key_[11][4][4];          // 轮密钥
};

#endif // !_AES_H_


实现文件 AES.cpp

#include "AES.h"
#include <assert.h>

CAES::CAES(const BYTE key[16])
:encrypt_permutation_table_(new BYTE[256]),
decrypt_permutation_table_(new BYTE[256])
{
const BYTE encrypt_permutation_table[] = {
0x63,0x7C,0x77,0x7B,0xF2,0x6B,0x6F,0xC5,0x30,0x01,0x67,0x2B,0xFE,0xD7,0xAB,0x76,
0xCA,0x82,0xC9,0x7D,0xFA,0x59,0x47,0xF0,0xAD,0xD4,0xA2,0xAF,0x9C,0xA4,0x72,0xC0,
0xB7,0xFD,0x93,0x26,0x36,0x3F,0xF7,0xCC,0x34,0xA5,0xE5,0xF1,0x71,0xD8,0x31,0x15,
0x04,0xC7,0x23,0xC3,0x18,0x96,0x05,0x9A,0x07,0x12,0x80,0xE2,0xEB,0x27,0xB2,0x75,
0x09,0x83,0x2C,0x1A,0x1B,0x6E,0x5A,0xA0,0x52,0x3B,0xD6,0xB3,0x29,0xE3,0x2F,0x84,
0x53,0xD1,0x00,0xED,0x20,0xFC,0xB1,0x5B,0x6A,0xCB,0xBE,0x39,0x4A,0x4C,0x58,0xCF,
0xD0,0xEF,0xAA,0xFB,0x43,0x4D,0x33,0x85,0x45,0xF9,0x02,0x7F,0x50,0x3C,0x9F,0xA8,
0x51,0xA3,0x40,0x8F,0x92,0x9D,0x38,0xF5,0xBC,0xB6,0xDA,0x21,0x10,0xFF,0xF3,0xD2,
0xCD,0x0C,0x13,0xEC,0x5F,0x97,0x44,0x17,0xC4,0xA7,0x7E,0x3D,0x64,0x5D,0x19,0x73,
0x60,0x81,0x4F,0xDC,0x22,0x2A,0x90,0x88,0x46,0xEE,0xB8,0x14,0xDE,0x5E,0x0B,0xDB,
0xE0,0x32,0x3A,0x0A,0x49,0x06,0x24,0x5C,0xC2,0xD3,0xAC,0x62,0x91,0x95,0xE4,0x79,
0xE7,0xC8,0x37,0x6D,0x8D,0xD5,0x4E,0xA9,0x6C,0x56,0xF4,0xEA,0x65,0x7A,0xAE,0x08,
0xBA,0x78,0x25,0x2E,0x1C,0xA6,0xB4,0xC6,0xE8,0xDD,0x74,0x1F,0x4B,0xBD,0x8B,0x8A,
0x70,0x3E,0xB5,0x66,0x48,0x03,0xF6,0x0E,0x61,0x35,0x57,0xB9,0x86,0xC1,0x1D,0x9E,
0xE1,0xF8,0x98,0x11,0x69,0xD9,0x8E,0x94,0x9B,0x1E,0x87,0xE9,0xCE,0x55,0x28,0xDF,
0x8C,0xA1,0x89,0x0D,0xBF,0xE6,0x42,0x68,0x41,0x99,0x2D,0x0F,0xB0,0x54,0xBB,0x16
};

const BYTE decrypt_permutation_table[256] = {
0x52,0x09,0x6A,0xD5,0x30,0x36,0xA5,0x38,0xBF,0x40,0xA3,0x9E,0x81,0xF3,0xD7,0xFB,
0x7C,0xE3,0x39,0x82,0x9B,0x2F,0xFF,0x87,0x34,0x8E,0x43,0x44,0xC4,0xDE,0xE9,0xCB,
0x54,0x7B,0x94,0x32,0xA6,0xC2,0x23,0x3D,0xEE,0x4C,0x95,0x0B,0x42,0xFA,0xC3,0x4E,
0x08,0x2E,0xA1,0x66,0x28,0xD9,0x24,0xB2,0x76,0x5B,0xA2,0x49,0x6D,0x8B,0xD1,0x25,
0x72,0xF8,0xF6,0x64,0x86,0x68,0x98,0x16,0xD4,0xA4,0x5C,0xCC,0x5D,0x65,0xB6,0x92,
0x6C,0x70,0x48,0x50,0xFD,0xED,0xB9,0xDA,0x5E,0x15,0x46,0x57,0xA7,0x8D,0x9D,0x84,
0x90,0xD8,0xAB,0x00,0x8C,0xBC,0xD3,0x0A,0xF7,0xE4,0x58,0x05,0xB8,0xB3,0x45,0x06,
0xD0,0x2C,0x1E,0x8F,0xCA,0x3F,0x0F,0x02,0xC1,0xAF,0xBD,0x03,0x01,0x13,0x8A,0x6B,
0x3A,0x91,0x11,0x41,0x4F,0x67,0xDC,0xEA,0x97,0xF2,0xCF,0xCE,0xF0,0xB4,0xE6,0x73,
0x96,0xAC,0x74,0x22,0xE7,0xAD,0x35,0x85,0xE2,0xF9,0x37,0xE8,0x1C,0x75,0xDF,0x6E,
0x47,0xF1,0x1A,0x71,0x1D,0x29,0xC5,0x89,0x6F,0xB7,0x62,0x0E,0xAA,0x18,0xBE,0x1B,
0xFC,0x56,0x3E,0x4B,0xC6,0xD2,0x79,0x20,0x9A,0xDB,0xC0,0xFE,0x78,0xCD,0x5A,0xF4,
0x1F,0xDD,0xA8,0x33,0x88,0x07,0xC7,0x31,0xB1,0x12,0x10,0x59,0x27,0x80,0xEC,0x5F,
0x60,0x51,0x7F,0xA9,0x19,0xB5,0x4A,0x0D,0x2D,0xE5,0x7A,0x9F,0x93,0xC9,0x9C,0xEF,
0xA0,0xE0,0x3B,0x4D,0xAE,0x2A,0xF5,0xB0,0xC8,0xEB,0xBB,0x3C,0x83,0x53,0x99,0x61,
0x17,0x2B,0x04,0x7E,0xBA,0x77,0xD6,0x26,0xE1,0x69,0x14,0x63,0x55,0x21,0x0C,0x7D
};

memcpy(encrypt_permutation_table_, encrypt_permutation_table, 256);
memcpy(decrypt_permutation_table_, decrypt_permutation_table, 256);
KeyExpansion(key);
}

CAES::~CAES()
{
if (encrypt_permutation_table_)
{
delete[]encrypt_permutation_table_;
encrypt_permutation_table_ = 0;
}

if (decrypt_permutation_table_)
{
delete[]decrypt_permutation_table_;
decrypt_permutation_table_ = 0;
}
}

size_t CAES::Encrypt(IN const void *const src_data, IN size_t src_len, OUT void* &dst_data, IN size_t dst_len, IN bool release_dst)
{
if (0 == src_data)
{
assert(src_data);
return 0;
}

if (0 == src_len)
{
return 0;
}

const size_t len = GetEncryptDataLen(src_len);
if (0 == dst_data)
{
dst_data = new BYTE[len];
}
else if (len > dst_len)
{
if (release_dst)
{
delete[]dst_data;
}
dst_data = new BYTE[len];
}

dst_len = len;

memset(dst_data, 0, dst_len);
memcpy(dst_data, src_data, src_len);

for (size_t i = 0; i < dst_len; i += 16)
{
Encrypt(reinterpret_cast<BYTE*>(dst_data) + i);
}

return dst_len;
}

void CAES::Decrypt(IN OUT void* data, IN size_t len)
{
if (0 == data || len % 16 != 0)
{
assert(data);
assert(len % 16);
return;
}

for (size_t i = 0; i < len; i += 16)
{
Decrypt(reinterpret_cast<BYTE*>(data) + i);
}
}

size_t CAES::GetEncryptDataLen(IN size_t src_len) const
{
if (src_len % 16 == 0)
{
return src_len;
}
else
{
return src_len + 16 - (src_len % 16);
}
}

void CAES::Encrypt(BYTE* data)
{
BYTE encrypt_data[4][4];
for (int row_index = 0; row_index < 4; row_index++)
{
for (int col_index = 0; col_index < 4; col_index++)
{
encrypt_data[row_index][col_index] = data[col_index * 4 + row_index];
}
}

AddRoundKey(encrypt_data, round_key_[0]);

for (int i = 1; i <= 10; i++)
{
EncryptSubBytes(encrypt_data);
EncryptShiftRows(encrypt_data);
if (i != 10)
{
EncryptMixColumns(encrypt_data);
}
AddRoundKey(encrypt_data, round_key_[i]);
}

for (int row_index = 0; row_index < 4; row_index++)
{
for (int col_index = 0; col_index < 4; col_index++)
{
data[col_index * 4 + row_index] = encrypt_data[row_index][col_index];
}
}
}

void CAES::Decrypt(BYTE* data)
{
BYTE decrypt_data[4][4];
for (int row_index = 0; row_index < 4; row_index++)
{
for (int col_index = 0; col_index < 4; col_index++)
{
decrypt_data[row_index][col_index] = data[col_index * 4 + row_index];
}
}

AddRoundKey(decrypt_data, round_key_[10]);

for (int i = 9; i >= 0; i--)
{
DecryptShiftRows(decrypt_data);
DecryptSubBytes(decrypt_data);
AddRoundKey(decrypt_data, round_key_[i]);

if (i)
{
DecryptMixColumns(decrypt_data);
}
}

for (int row_index = 0; row_index < 4; row_index++)
{
for (int col_index = 0; col_index < 4; col_index++)
{
data[col_index * 4 + row_index] = decrypt_data[row_index][col_index];
}
}
}

void CAES::KeyExpansion(const BYTE* key)
{
for (int row_index = 0; row_index < 4; row_index++)
{
for (int col_index = 0; col_index < 4; col_index++)
{
round_key_[0][row_index][col_index] = key[row_index + col_index * 4];
}
}

// 轮常量
const BYTE round_const_value[] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1B, 0x36 };

for (int i = 1; i <= 10; i++)
{
for (int j = 0; j < 4; j++)
{
BYTE tmp[4];
for (int row_index = 0; row_index < 4; row_index++)
{
tmp[row_index] = j ? round_key_[i][row_index][j - 1] : round_key_[i - 1][row_index][3];
}

if (j == 0)
{
BYTE table_index = tmp[0];
for (int row_index = 0; row_index < 3; row_index++)
{
tmp[row_index] = encrypt_permutation_table_[tmp[(row_index + 1) % 4]];
}

tmp[3] = encrypt_permutation_table_[table_index];
tmp[0] ^= round_const_value[i - 1];
}

for (int row_index = 0; row_index < 4; row_index++)
{
round_key_[i][row_index][j] = round_key_[i - 1][row_index][j] ^ tmp[row_index];
}
}
}
}

BYTE CAES::FFmul(BYTE a, BYTE b)
{
BYTE b_power[4] = {b, 0, 0, 0};
for (int i = 1; i < 4; i++)
{
b_power[i] = b_power[i - 1] << 1;
if (b_power[i - 1] & 0x80)
{
b_power[i] ^= 0x1B;
}
}

BYTE value = 0;
for (int i = 0; i < 4; i++)
{
if ((a >> i) & 0x01)
{
value ^= b_power[i];
}
}

return value;
}

void CAES::EncryptSubBytes(BYTE data[][4])
{
for (int row_index = 0; row_index < 4; row_index++)
{
for (int col_index = 0; col_index < 4; col_index++)
{
data[row_index][col_index] = encrypt_permutation_table_[data[row_index][col_index]];
}
}
}

void CAES::EncryptShiftRows(BYTE data[][4])
{
BYTE tmp[4];
for (int row_index = 1; row_index < 4; row_index++)
{
for (int col_index = 0; col_index < 4; col_index++)
{
tmp[col_index] = data[row_index][(col_index + row_index) % 4];
}

for (int col_index = 0; col_index < 4; col_index++)
{
data[row_index][col_index] = tmp[col_index];
}
}
}

void CAES::EncryptMixColumns(BYTE data[][4])
{
BYTE tmp[4];
for (int col_index = 0; col_index < 4; col_index++)
{
for (int row_index = 0; row_index < 4; row_index++)
{
tmp[row_index] = data[row_index][col_index];
}

for (int row_index = 0; row_index < 4; row_index++)
{
data[row_index][col_index] = FFmul(0x02, tmp[row_index])
^ FFmul(0x03, tmp[(row_index + 1) % 4])
^ FFmul(0x01, tmp[(row_index + 2) % 4])
^ FFmul(0x01, tmp[(row_index + 3) % 4]);
}
}
}

void CAES::AddRoundKey(BYTE data[][4], BYTE key[][4])
{
for (int col_index = 0; col_index < 4; col_index++)
{
for (int row_index = 0; row_index < 4; row_index++)
{
data[row_index][col_index] ^= key[row_index][col_index];
}
}
}

void CAES::DecryptSubBytes(BYTE data[][4])
{
for (int row_index = 0; row_index < 4; row_index++)
{
for (int col_index = 0; col_index < 4; col_index++)
{
data[row_index][col_index] = decrypt_permutation_table_[data[row_index][col_index]];
}
}
}

void CAES::DecryptShiftRows(BYTE data[][4])
{
BYTE tmp[4];
for (int row_index = 1; row_index < 4; row_index++)
{
for (int col_index = 0; col_index < 4; col_index++)
{
tmp[col_index] = data[row_index][(col_index - row_index + 4) % 4];
}

for (int col_index = 0; col_index < 4; col_index++)
{
data[row_index][col_index] = tmp[col_index];
}
}
}

void CAES::DecryptMixColumns(BYTE data[][4])
{
BYTE tmp[4];
for (int col_index = 0; col_index < 4; col_index++)
{
for (int row_index = 0; row_index < 4; row_index++)
{
tmp[row_index] = data[row_index][col_index];
}

for (int row_index = 0; row_index < 4; row_index++)
{
data[row_index][col_index] = FFmul(0x0e, tmp[row_index])
^ FFmul(0x0b, tmp[(row_index + 1) % 4])
^ FFmul(0x0d, tmp[(row_index + 2) % 4])
^ FFmul(0x09, tmp[(row_index + 3) % 4]);
}
}
}


应用举例

#include "AES.h"

int main()
{
byte key[] = { 0x6E, 0x66, 0xAE, 0x0B,
0xE7, 0x29, 0x41, 0xEB,
0xA6, 0x53, 0x10, 0x21,
0x13, 0x76, 0x08, 0x2E
};

char src[] = "my test";
printf("data before encryption. len = [%u]:\n", strlen(src));
for (UINT i = 0; i < strlen(src); i++)
{
printf("0x%02X ", src[i]);
}
printf("\n\n");

void* dst = 0;
CAES aes(key);
const UINT dst_len = aes.Encrypt(reinterpret_cast<void*>(src), sizeof(src), dst, 0);
printf("encrypted data. len = [%u]:\n", dst_len);
for (UINT i = 0; i < dst_len; i++)
{
printf("0x%02X ", reinterpret_cast<BYTE*>(dst)[i]);
}
printf("\n\n");

aes.Decrypt(dst, dst_len);
printf("decrypted data:\n");
for (UINT i = 0; i < dst_len; i++)
{
printf("0x%02X ", reinterpret_cast<BYTE*>(dst)[i]);
}
printf("\n\n");

delete[]dst;

return 0;
}


data before encryption. len = [7]:

0x6D 0x79 0x20 0x74 0x65 0x73 0x74

encrypted data. len = [16]:

0x89 0xA7 0x21 0x86 0xBD 0xA3 0xDC 0x5E 0x9A 0x5A 0x8D 0x0B 0x43 0xB2 0xBC 0xBD

decrypted data:

0x6D 0x79 0x20 0x74 0x65 0x73 0x74 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签:  AES加密算法 AES 加密