您的位置:首页 > 其它

libubox

2016-01-08 00:00 127 查看
libubox是openwrt新版本中的一个基础库,在openwrt.14.07中有很多应用程序是基于libubox开发的。(如:uhttpd,libubus等)。

libubox主要提供一下两种功能:

1、提供一套基于事件驱动的机制。

2、提供多种开发支持接口。(如:链表、kv链表、平衡查找二叉树、md5、json)

使用libubox开发的好处有如下几点:

1、可以使程序基于事件驱动,从而可实现在单线程中处理多个任务。

2、基于libubox提供的开发API可以加快开发进度的同事提高程序的稳定性。

3、能更好的将程序融入openwrt的架构中,因为新的openwrt的很多应用和库都基于libubox开发的。

综上所述,libubox是您玩新版openwrt必修的一个东东,相信它也值得大家去研究学习。

事件框架

uloop.c/h:

主框架
/**
* 初始化事件循环
*/
int uloop_init(void)
/**
* 事件循环主处理入口
*/
void uloop_run(void)
/**
* 销毁事件循环
*/
void uloop_done(void)

描述符结构体
struct uloop_fd {
uloop_fd_handler cb;    /** 描述符事件处理函数 */
int fd;                 /** 文件描述符,调用者初始化 */
bool eof;
bool error;
bool registered;        /** 是否已注册到uloop中 */
uint8_t flags;
};
定时器结构体
struct uloop_timeout {
struct list_head list;
bool pending;
uloop_timeout_handler cb; /** 定时事件处理函数 */
struct timeval time;      /** 时间结构体 */
};
进程结构体
struct uloop_process {
 struct list_head list;
bool pending;
uloop_process_handler cb;       /** 进程事件处理函数 */
pid_t pid;                      /** 进程号*/
};

描述符事件处理函数
typedef void (*uloop_fd_handler)(struct uloop_fd *u, unsigned int events)
定时器事件处理函数
typedef void (*uloop_timeout_handler)(struct uloop_timeout *t)
进程事件处理函数
typedef void (*uloop_process_handler)(struct uloop_process *c, int ret)

事件标志
#define ULOOP_READ          (1 << 0)
#define ULOOP_WRITE         (1 << 1)
#define ULOOP_EDGE_TRIGGER  (1 << 2)
#define ULOOP_BLOCKING      (1 << 3)
#define ULOOP_EVENT_MASK    (ULOOP_READ | ULOOP_WRITE)

定时器事件
/**
* 注册一个新定时器
*/
int uloop_timeout_add(struct uloop_timeout *timeout)
/**
* 设置定时器超时时间(毫秒),并添加
*/
int uloop_timeout_set(struct uloop_timeout *timeout, int msecs)
/**
* 销毁指定定时器
*/
int uloop_timeout_cancel(struct uloop_timeout *timeout)
/**
* 获取定时器还剩多长时间超时
*/
int uloop_timeout_remaining(struct uloop_timeout *timeout)

描述符事件
/**
* 注册一个新描述符到事件处理循环
*/
int uloop_fd_add(struct uloop_fd *sock, unsigned int flags)
/**
* 从事件处理循环中销毁指定描述符
*/
int uloop_fd_delete(struct uloop_fd *sock)

进程事件
/**
* 注册新进程到事件处理循环
*/
int uloop_process_add(struct uloop_process *p)
/**
* 从事件处理循环中销毁指定进程
*/
int uloop_process_delete(struct uloop_process *p)

//任务队列结构体
struct runqueue {
struct safe_list tasks_active;      /** 活动任务队列 */
struct safe_list tasks_inactive;    /** 不活动任务队列 */
struct uloop_timeout timeout;
int running_tasks;      /** 当前活动任务数目 */
int max_running_tasks;  /** 允许最大活动任务数目 */
bool stopped;           /** 是否停止任务队列 */
bool empty;             /** 任务队列(包括活动和不活动)是否为空 */

/* called when the runqueue is emptied */
void (*empty_cb)(struct runqueue *q);
};

//任务处理函数
struct runqueue_task_type {
const char *name;
/*
* called when a task is requested to run
*
* The task is removed from the list before this callback is run. It
* can re-arm itself using runqueue_task_add.
*/
void (*run)(struct runqueue *q, struct runqueue_task *t);
/*
* called to request cancelling a task
*
* int type is used as an optional hint for the method to be used when
* cancelling the task, e.g. a signal number for processes. Calls
* runqueue_task_complete when done.
*/
void (*cancel)(struct runqueue *q, struct runqueue_task *t, int type);
/*
* called to kill a task. must not make any calls to runqueue_task_complete,
* it has already been removed from the list.
*/
void (*kill)(struct runqueue *q, struct runqueue_task *t);
};

//任务结构体
struct runqueue_task {
struct safe_list list;
const struct runqueue_task_type *type;
struct runqueue *q;
void (*complete)(struct runqueue *q, struct runqueue_task *t);
struct uloop_timeout timeout;
int run_timeout;    /** >0表示规定此任务执行只有run_timeout毫秒 */
int cancel_timeout; /** >0表示规则任务延取消操作执行只有run_timeout毫秒*/
int cancel_type;
bool queued;        /** 此任务是否已加入任务队列中 */
bool running;       /** 此任务是否活动,即已在活动队列中 */
bool cancelled;     /** 此任务是否已被取消 */
};

//进程任务结构体
struct runqueue_process {
struct runqueue_task task;
struct uloop_process proc;
};

任务队列操作函数

/**
* 初始化任务队列
*/
void runqueue_init(struct runqueue *q)
/**
* 取消所有任务队列
*/
void runqueue_cancel(struct runqueue *q);
/**
* 取消活动中的任务
*/
void runqueue_cancel_active(struct runqueue *q);
/**
* 取消不活动的任务
*/
void runqueue_cancel_pending(struct runqueue *q);
/**
* 杀死所有任务
*/
void runqueue_kill(struct runqueue *q);
/**
* 停止所有任务
*/
void runqueue_stop(struct runqueue *q);
/**
* 重新开始任务
*/
void runqueue_resume(struct runqueue *q);

任务操作函数
/**
* 添加新任务到队列尾
*
* @running true-加入活动队列;false-加入不活动队列
*/
void runqueue_task_add(struct runqueue *q, struct runqueue_task *t, bool running);
/**
* 添加新任务到队列头
*
* @running true-加入活动队列;false-加入不活动队列
*/
void runqueue_task_add_first(struct runqueue *q, struct runqueue_task *t,
bool running);
/**
* 完全任务
*/
void runqueue_task_complete(struct runqueue_task *t);
/**
* 取消任务
*/
void runqueue_task_cancel(struct runqueue_task *t, int type);
/**
* 杀死任务
*/
void runqueue_task_kill(struct runqueue_task *t);

进程任务操作函数
void runqueue_process_add(struct runqueue *q, struct runqueue_process *p, pid_t pid);
/**
* to be used only from runqueue_process callbacks
*/
void runqueue_process_cancel_cb(struct runqueue *q, struct runqueue_task *t, int type);
void runqueue_process_kill_cb(struct runqueue *q, struct runqueue_task *t);

流缓冲管理

ustream.c/h/ustream-fd.c:

//流buffer结构体
struct ustream_buf {
struct ustream_buf *next;
char *data;     /** 指向上次操作buff开始地址 */
char *tail;     /** 指向未使用buff开始地址 */
char *end;      /** 指向buf结束地址 */

char head[];    /** 指向buf开始地址 */
};

//流buffer结构体的链表
struct ustream_buf_list {
struct ustream_buf *head;       /** 指向第1块ustream_buf */
struct ustream_buf *data_tail;  /** 指向未使用的ustream_buf */
struct ustream_buf *tail;       /** 指向最后的ustream_buf */

int (*alloc)(struct ustream *s, struct ustream_buf_list *l);
int data_bytes;    /** 已用存储空间大小 */

int min_buffers;   /** 可存储最小的ustream_buf块个数 */
int max_buffers;   /** 可存储最大的ustream_buf块个数 */
int buffer_len;    /** 每块ustream_buf块存储空间大小 */

int buffers;       /** ustream_buf块个数 */
};

//读写操作的缓冲结构及操作函数
struct ustream {
struct ustream_buf_list r, w;
struct uloop_timeout state_change;
struct ustream *next;
/*
* notify_read: (optional)
* called by the ustream core to notify that new data is available
* for reading.
* must not free the ustream from this callback
*/
void (*notify_read)(struct ustream *s, int bytes_new);
/*
* notify_write: (optional)
* called by the ustream core to notify that some buffered data has
* been written to the stream.
* must not free the ustream from this callback
*/
void (*notify_write)(struct ustream *s, int bytes);
/*
* notify_state: (optional)
* called by the ustream implementation to notify that the read
* side of the stream is closed (eof is set) or there was a write
* error (write_error is set).
* will be called again after the write buffer has been emptied when
* the read side has hit EOF.
*/
void (*notify_state)(struct ustream *s);
/*
* write:
* must be defined by ustream implementation, accepts new write data.
* 'more' is used to indicate that a subsequent call will provide more
* data (useful for aggregating writes)
* returns the number of bytes accepted, or -1 if no more writes can
* be accepted (link error)
*/
int (*write)(struct ustream *s, const char *buf, int len, bool more);
/*
* free: (optional)
* defined by ustream implementation, tears down the ustream and frees data
*/
void (*free)(struct ustream *s);
/*
* set_read_blocked: (optional)
* defined by ustream implementation, called when the read_blocked flag
* changes
*/
void (*set_read_blocked)(struct ustream *s);
/*
* poll: (optional)
* defined by the upstream implementation, called to request polling for
* available data.
* returns true if data was fetched.
*/
bool (*poll)(struct ustream *s);
/*
* ustream user should set this if the input stream is expected
* to contain string data. the core will keep all data 0-terminated.
*/
bool string_data;     /** 此ustream是否为字符串,true-是;false-否 */
bool write_error;     /** 写出错,true-是;false-否 */
bool eof, eof_write_done;
enum read_blocked_reason read_blocked;
};

//流描述符结构体
struct ustream_fd {
struct ustream stream;
struct uloop_fd fd;
};

//流结构操作函数

/**
* ustream_fd_init: create a file descriptor ustream (uses uloop)
*/
void ustream_fd_init(struct ustream_fd *s, int fd)
/**
* ustream_init_defaults: fill default callbacks and options
*/
void ustream_init_defaults(struct ustream *s)
/**
* ustream_free: free all buffers and data associated with a ustream
*/
void ustream_free(struct ustream *s)

//分配len空间
char *ustream_reserve(struct ustream *s, int len, int *maxlen)
//移除读buffer中地一个数据结构
void ustream_consume(struct ustream *s, int len)
//


双向链表

list.h:

struct list_head {
struct list_head *next;
struct list_head *prev;
};

#define LIST_HEAD_INIT(name) { &(name), &(name) }
#define (name) struct list_head name = LIST_HEAD_INIT(name)
static inline void INIT_LIST_HEAD(struct list_head *list)

/**
* 加入链表头部
*/
list_add(struct list_head *_new, struct list_head *head)
/**
* 加入链表尾部
*/
list_add_tail(struct list_head *_new, struct list_head *head)

/**
* 把指定节点从链表中删除
*/
list_del(struct list_head *entry)
/**
* 把指定节点从链表中删除,并初始此节点
*/
list_del_init(struct list_head *entry)

/**
* 获取当前节点元素
*/
list_entry(ptr, type, field)
/**
* 获取后一个节点元素
*/
list_first_entry(ptr, type, field)
/**
* 获取前一个节点元素
*/
list_last_entry(ptr, type, field)

/**
* 向后遍历链表,遍历过程不能操作链表,p为节点元素结构体
*/
list_for_each_entry(p, h, field)
/**
* 向前遍历链表,遍历过程不能操作链表,p为链表结构体
*/
list_for_each_prev(p, h)
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: