您的位置:首页 > 其它

socket的发送与接收缓冲区

2016-01-05 16:40 411 查看
应用程序可通过调用send(write,
sendmsg等)利用tcp socket向网络发送应用数据,而tcp/ip协议栈再通过网络设备接口把已经组织成struct sk_buff的应用数据(tcp数据报)真正发送到网络上,由于应用程序调用send的速度跟网络介质发送数据的速度存在差异,所以,一部分应用数据被组织成tcp数据报之后,会缓存在tcp socket的发送缓存队列中,等待网络空闲时再发送出去。同时,tcp协议要求对端在收到tcp数据报后,要对其序号进行ACK,只有当收到一个tcp 数据报的ACK之后,才可以把这个tcp数据报(以一个struct
sk_buff的形式存在)从socket的发送缓冲队列中清除。

tcp socket的发送缓冲区实际上是一个结构体struct sk_buff的队列,我们可以把它称为发送缓冲队列,由结构体struct sock的成员sk_write_queue表示。sk_write_queue是一个结构体struct sk_buff_head类型,这是一个struct sk_buff的双向链表,其定义如下:

struct sk_buff_head {

struct sk_buff *next; //后指针

struct sk_buff *prev; //前指针

__u32 qlen; //队列长度(即含有几个struct sk_buff)

spinlock_t lock; //链表锁

};

内核代码中,先在这个队列中创建足够存放数据的struct sk_buff,然后向队列存入应用数据。

结构体struct sock的成员sk_wmem_queued表示发送缓冲队列中已分配的字节数,一般来说,分配一个struct sk_buff是用于存放一个tcp数据报,其分配字节数应该是MSS+协议首部长度。在我的实验环境中,MSS值是1448,协议首部取最大长度 MAX_TCP_HEADER,在我的实验环境中为224。经数据对齐处理后,最后struct sk_buff的truesize为1956。也就是队列中每分配一个struct sk_buff,成员sk_wmem_queue的值就增加1956。

struct sock的成员sk_forward_alloc是表示预分配长度。当我们第一次要为发送缓冲队列分配一个struct sk_buff时,我们并不是直接分配需要的内存大小,而是会以内存页为单位进行的预分配。

tcp协议分配struct sk_buff的函数是sk_stream_alloc_pskb。它首先根据传入的参数指定的大小在内存中分配一个struct sk_buff,如果成功,sk_forward_alloc取该大小值,并向上取整到页(4096字节)的整数倍。并累加到struct sock的成员sk_prot,也即表示tcp协议的结构体mytcp_prot的成员memory_allocated中,该成员是一个指针,指向变量 tcp_memory_allocated,它表示的是当前整个TCP协议当前为缓冲区所分配的内存(包括读缓冲队列)

当把这个新分配成功的struct sk_buff放入到缓冲队列sk_write_queue后,从sk_forward_alloc中减去该sk_buff的truesize值。第二次分配struct sk_buff时,只要再从sk_forward_alloc中减去新的sk_buff的truesize即可,如果sk_forward_alloc已经小于当前的truesize,则将其再加上一个页的整数倍值,并累加入tcp_memory_allocated。

也就是说,通过sk_forward_alloc使全局变量tcp_memory_allocated保存当前tcp协议总的缓冲区分配内存的大小,并且该大小是页边界对齐的。

(2)

前面讲到struct sock的成员sk_forward_alloc表示预分配内存大小,用于向全局变量mytcp_memory_allocated累加当前已分配的整个 TCP协议的缓冲区大小。之所以要累加这个值,是为了对tcp协议总的可用缓冲区大小作限制。表示TCP协议的结构体mytcp_prot还有几个成员与缓冲区相关。

mysysctl_tcp_mem是一个数组,由mytcp_prot的成员sysctl_mem指向,数组共有三个元素,mysysctl_tcp_mem[0]表示对缓冲区总的可用大小的最低限制,当前总共分配的缓冲区大小低于这个值,则没有问题,分配成功。 mysysctl_tcp_mem[2]表示对缓冲区可用大小的最高硬性限制,一旦总分配的缓冲区大小超出这个值,我们只好把tcp

socket 的发送缓冲区的预设大小sk_sndbuf减小为已分配缓冲队列大小的一半,但不能小于SOCK_MIN_SNDBUF(2K),但保证这一次的分配成功。mysysctl_tcp_mem[1]介于前面两个值的中间,这是一个警告值,一旦超出这个值,进入警告状态,这个状态下,根据调用参数来决定此次分配是否成功。

这三个值的大小是根据所在系统的内存大小,在初始化时决定的,在我的实验环境中,内存大小为256M,这三个值分配是:96K,128K,192K。它们可以通过/proc文件系统,在/proc/sys/net/ipv4/tcp_mem中进行修改。当然,除非特别需要,一般无需改动这些缺省值。

mysysctl_tcp_wmem也是一个同样结构的数组,表示发送缓冲区的大小限制,由mytcp_prot的成员sysctl_wmem指向,其缺省值分别是4K,16K,128K。可以通过/proc文件系统,在/proc/sys/net/ipv4/tcp_wmem中进行修改。struct sock的成员sk_sndbuf的值是真正的发送缓冲队列的预设大小,其初始值取中间一个16K。在tcp数据报的发送过程中,一旦 sk_wmem_queued超过sk_sndbuf的值,则发送停止,等待发送缓冲区可用。因为有可能一批已发送出去的数据还没有收到ACK,同时,缓冲队列中的数据也可全部发出去,已达到清空缓冲队列的目的,所以,只要在网络不是很差的情况下(差到没有办法收到ACK),这个等待在一段时间后会成功的。

全局变量mytcp_memory_pressure是一个标志,在tcp缓冲大小进入警告状态时,它置1,否则置0。

(3)

mytcp_sockets_allocated是到目前为止,整个tcp协议中创建的socket的个数,由mytcp_prot的成员 sockets_allocated指向。可以在/proc/net/sockstat文件中查看,这只是一个供统计查看用的数据,没有任何实际的限制作用。

mytcp_orphan_count表示整个tcp协议中待销毁的socket的个数(已无用的socket),由mytcp_prot的成员orphan_count指向,也可以在/proc/net/sockstat文件中查看。

mysysctl_tcp_rmem是跟mysysctl_tcp_wmem相同结构的数组,表示接收缓冲区的大小限制,由mytcp_prot的成员 sysctl_rmem指向,其缺省值分别是4096bytes,87380bytes,174760bytes。它们可以通过/proc文件系统,在 /proc/sys/net/ipv4/tcp_rmem中进行修改。struct sock的成员sk_rcvbuf表示接收缓冲队列的大小,其初始值取mysysctl_tcp_rmem[1],成员sk_receive_queue
是接收缓冲队列,结构跟sk_write_queue相同。

tcp socket的发送缓冲队列跟接收缓冲队列的大小既可以通过/proc文件系统进行修改,也可以通过TCP选项操作进行修改。套接字级别上的选项 SO_RCVBUF可用于获取和修改接收缓冲队列的大小(即strcut sock->sk_rcvbuf的值),比如下列的代码可用于获取当前系统的接收缓冲队列大小:

int rcvbuf_len;

int len = sizeof(rcvbuf_len);

if( getsockopt( fd, SOL_SOCKET, SO_RCVBUF, (void *)&rcvbuf_len, &len ) < 0 ){

perror("getsockopt: ");

return -1;

}

printf("the recevice buf len: %d\n", rcvbuf_len );

而套接字级别上的选项SO_SNDBUF则用于获取和修改发送缓冲队列的大小(即struct sock->sk_sndbuf的值),代码同上,只需改SO_RCVBUF为SO_SNDBUF即可。

获取发送和接收缓冲区的大小相对简单一些,而设置的操作在内核中动作会稍微复杂一些,另外,在接口上也会有所差异,即由setsockopt传入的表示缓冲区大小的参数是实际大小的1/2,即,如果想要设发送缓冲区的大小为20K,则需要这样调用setsockopt:

int rcvbuf_len = 10 * 1024; //实际缓冲区大小的一半。

int len = sizeof(rcvbuf_len);

if( setsockopt( fd, SOL_SOCKET, SO_SNDBUF, (void *)&rcvbuf_len, len ) < 0 ){

perror("getsockopt: ");

return -1;

}

在内核中,首先内核要判断新设置的值是否超过上限,若超过,则取上限为新值,发送和接收缓冲区大小的上限值分别为sysctl_wmem_max和 sysctl_rmem_max的2倍。这两个全局变量的值是相等的,都为(sizeof(struct sk_buff) + 256) * 256,大概为64K负载数据,由于struct sk_buff的影响,实际发送和接收缓冲区的大小最大都可设到210K左右。它们的下限是2K,即缓冲区大小不能低于2K。

另外,SO_SNDBUF和SO_RCVBUF有一个特殊的版本:SO_SNDBUFFORCE和SO_RCVBUFFORCE,它们不受发送和接收缓冲区大小上限的限制,可设置不小于2K的任意缓冲区大小。(完)

===================================================

以下内容是Socket相关参数的设置方法

1. 如果在已经处于 ESTABLISHED状态下的socket(一般由端口号和标志符区分)调用

closesocket(一般不会立即关闭而经历TIME_WAIT的过程)后想继续重用该socket:

BOOL bReuseaddr=TRUE;

setsockopt(s,SOL_SOCKET ,SO_REUSEADDR,(const char*)&bReuseaddr,sizeof(BOOL));

2. 如果要已经处于连接状态的soket在调用closesocket后强制关闭,不经历

TIME_WAIT的过程:

BOOL bDontLinger = FALSE;

setsockopt(s,SOL_SOCKET,SO_DONTLINGER,(const char*)&bDontLinger,sizeof(BOOL));

3.在send(),recv()过程中有时由于网络状况等原因,发收不能预期进行,而设置收发时限:

int nNetTimeout=1000;//1秒

//发送时限

setsockopt(socket,SOL_S0CKET,SO_SNDTIMEO,(char *)&nNetTimeout,sizeof(int));

//接收时限

setsockopt(socket,SOL_S0CKET,SO_RCVTIMEO,(char *)&nNetTimeout,sizeof(int));

4.在send()的时候,返回的是实际发送出去的字节(同步)或发送到socket缓冲区的字节

(异步);系统默认的状态发送和接收一次为8688字节(约为8.5K);在实际的过程中发送数据

和接收数据量比较大,可以设置socket缓冲区,而避免了send(),recv()不断的循环收发:

// 接收缓冲区

int nRecvBuf=32*1024;//设置为32K

setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char*)&nRecvBuf,sizeof(int));

//发送缓冲区

int nSendBuf=32*1024;//设置为32K

setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char*)&nSendBuf,sizeof(int));

5. 如果在发送数据的时,希望不经历由系统缓冲区到socket缓冲区的拷贝而影响

程序的性能:

int nZero=0;

setsockopt(socket,SOL_S0CKET,SO_SNDBUF,(char *)&nZero,sizeof(nZero));

6.同上在recv()完成上述功能(默认情况是将socket缓冲区的内容拷贝到系统缓冲区):

int nZero=0;

setsockopt(socket,SOL_S0CKET,SO_RCVBUF,(char *)&nZero,sizeof(int));

7.一般在发送UDP数据报的时候,希望该socket发送的数据具有广播特性:

BOOL bBroadcast=TRUE;

setsockopt(s,SOL_SOCKET,SO_BROADCAST,(const char*)&bBroadcast,sizeof(BOOL));

8.在client连接服务器过程中,如果处于非阻塞模式下的socket在connect()的过程中可

以设置connect()延时,直到accpet()被呼叫(本函数设置只有在非阻塞的过程中有显著的

作用,在阻塞的函数调用中作用不大)

BOOL bConditionalAccept=TRUE;

setsockopt(s,SOL_SOCKET,SO_CONDITIONAL_ACCEPT,(const char*)&bConditionalAccept,sizeof(BOOL));

9.如果在发送数据的过程中(send()没有完成,还有数据没发送)而调用了closesocket(),以前我们

一般采取的措施是"从容关闭"shutdown(s,SD_BOTH),但是数据是肯定丢失了,如何设置让程序满足具体

应用的要求(即让没发完的数据发送出去后在关闭socket)?

struct linger {

u_short l_onoff;

u_short l_linger;

};

linger m_sLinger;

m_sLinger.l_onoff=1;//(在closesocket()调用,但是还有数据没发送完毕的时候容许逗留)

// 如果m_sLinger.l_onoff=0;则功能和2.)作用相同;

m_sLinger.l_linger=5;//(容许逗留的时间为5秒)

setsockopt(s,SOL_SOCKET,SO_LINGER,(const char*)&m_sLinger,sizeof(linger));

Note:1.在设置了逗留延时,用于一个非阻塞的socket是作用不大的,最好不用;

2.如果想要程序不经历SO_LINGER需要设置SO_DONTLINGER,或者设置l_onoff=0;

10.还一个用的比较少的是在SDI或者是Dialog的程序中,可以记录socket的调试信息:

(前不久做过这个函数的测试,调式信息可以保存,包括socket建立时候的参数,采用的

具体协议,以及出错的代码都可以记录下来)

BOOL bDebug=TRUE;

setsockopt(s,SOL_SOCKET,SO_DEBUG,(const char*)&bDebug,sizeof(BOOL));

11.附加:往往通过setsockopt()设置了缓冲区大小,但还不能满足数据的传输需求,

我的习惯是自己写个处理网络缓冲的类,动态分配内存;下面我将这个类写出,希望对

初学者有所帮助:

//仿照String 改写而成

//==============================================================================

// 二进制数据,主要用于收发网络缓冲区的数据

// CNetIOBuffer 以 MFC 类 CString 的源代码作为蓝本改写而成,用法与 CString 类似,

// 但是 CNetIOBuffer 中存放的是纯粹的二进制数据,'/0' 并不作为它的结束标志。

// 其数据长度可以通过 GetLength() 获得,缓冲区地址可以通过运算符 LPBYTE 获得。

//==============================================================================

// Copyright (c) All-Vision Corporation. All rights reserved.

// Module: NetObject

// File: SimpleIOBuffer.h

// Author: gdy119

// Email : 8751webmaster@126.com

// Date: 2004.11.26

//==============================================================================

// NetIOBuffer.h

#ifndef _NETIOBUFFER_H

#define _NETIOBUFFER_H

//=============================================================================

#define MAX_BUFFER_LENGTH 1024*1024

//=============================================================================

//主要用来处理网络缓冲的数据

class CNetIOBuffer

{

protected:

LPBYTE m_pbinData;

int m_nLength;

int m_nTotalLength;

CRITICAL_SECTIONm_cs;

void Initvalibers();

public:

CNetIOBuffer();

CNetIOBuffer(const LPBYTE lbbyte, int nLength);

CNetIOBuffer(const CNetIOBuffer&binarySrc);

virtual ~CNetIOBuffer();

//=============================================================================

BOOL CopyData(const LPBYTE lbbyte, int nLength);

BOOL ConcatData(const LPBYTE lbbyte, int nLength);

void ResetIoBuffer();

int GetLength() const;

BOOL SetLength(int nLen);

LPBYTE GetCurPos();

int GetRemainLen();

BOOL IsEmpty() const;

operator LPBYTE() const;

static GetMaxLength() { return MAX_BUFFER_LENGTH; }

const CNetIOBuffer& operator=(const CNetIOBuffer& buffSrc);

};

#endif //

// NetOBuffer.cpp: implementation of the CNetIOBuffer class.

//======================================================================

#include "stdafx.h"

#include "NetIOBuffer.h"

//======================================================================

//=======================================================================

// Construction/Destruction

CNetIOBuffer::CNetIOBuffer()

{

Initvalibers();

}

CNetIOBuffer::CNetIOBuffer(const LPBYTE lbbyte, int nLength)

{

Initvalibers();

CopyData(lbbyte, nLength);

}

CNetIOBuffer::~CNetIOBuffer()

{

delete []m_pbinData;

m_pbinData=NULL;

DeleteCriticalSection(&m_cs);

}

CNetIOBuffer::CNetIOBuffer(const CNetIOBuffer&binarySrc)

{

Initvalibers();

CopyData(binarySrc,binarySrc.GetLength());

}

void CNetIOBuffer::Initvalibers()

{

m_pbinData = NULL;

m_nLength = 0;

m_nTotalLength = MAX_BUFFER_LENGTH;

if(m_pbinData==NULL)

{

m_pbinData=new BYTE[m_nTotalLength];

ASSERT(m_pbinData!=NULL);

}

InitializeCriticalSection(&m_cs);

}

void CNetIOBuffer::ResetIoBuffer()

{

EnterCriticalSection(&m_cs);

m_nLength = 0;

memset(m_pbinData,0,m_nTotalLength);

LeaveCriticalSection(&m_cs);

}

BOOL CNetIOBuffer::CopyData(const LPBYTE lbbyte, int nLength)

{

if( nLength > MAX_BUFFER_LENGTH )

return FALSE;

ResetIoBuffer();

EnterCriticalSection(&m_cs);

memcpy(m_pbinData, lbbyte, nLength );

m_nLength = nLength;

LeaveCriticalSection(&m_cs);

return TRUE;

}

BOOL CNetIOBuffer::ConcatData(const LPBYTE lbbyte, int nLength)

{

if( m_nLength + nLength > MAX_BUFFER_LENGTH )

return FALSE;

EnterCriticalSection(&m_cs);

memcpy(m_pbinData+m_nLength, lbbyte, nLength );

m_nLength += nLength;

LeaveCriticalSection(&m_cs);

return TRUE;

}

int CNetIOBuffer::GetLength() const

{

return m_nLength;

}

BOOL CNetIOBuffer::SetLength(int nLen)

{

if( nLen > MAX_BUFFER_LENGTH )

return FALSE;

EnterCriticalSection(&m_cs);

m_nLength = nLen;

LeaveCriticalSection(&m_cs);

return TRUE;

}

LPBYTE CNetIOBuffer::GetCurPos()

{

if( m_nLength < MAX_BUFFER_LENGTH )

return (m_pbinData+m_nLength);

else

return NULL;

}

CNetIOBuffer:: operator LPBYTE() const

{

return m_pbinData;

}

int CNetIOBuffer::GetRemainLen()

{

return MAX_BUFFER_LENGTH - m_nLength;

}

BOOL CNetIOBuffer::IsEmpty() const

{

return m_nLength == 0;

}

const CNetIOBuffer& CNetIOBuffer:: operator=(const CNetIOBuffer& buffSrc)

{

if(&buffSrc!=this)

{

CopyData(buffSrc, buffSrc.GetLength());

}

return *this;

}

回复人: PiggyXP(【小猪】●至爱VC,至爱网络版●) ( ) 信誉:204

其实我觉得第5条很应该值得注意

int nZero=0;

setsockopt(socket,SOL_S0CKET,SO_SNDBUF,(char *)&nZero,sizeof(nZero));

记得以前有些朋友讨论过,socket虽然send成功了,但是其实只是发送到数据缓冲区里面了,而并没有真正的在物理设备上发送出去;而通过这条语句,将发送缓冲区设置为0,即屏蔽掉发送缓冲以后,一旦send返回(当然是就阻塞套结字来说),就可以肯定数据已经在发送的途中了^_^,但是这样做也许会影响系统的性能

to:Sander()

UDP也有拷贝过程,但是UDP包有最大限制为64K;

TCP_NODELAY 一般用在the normal data stream 上;

12.发送数据时候一般是系统缓冲区满以后才发送,现在设置为只要系统

缓冲区有数据就立刻发送:

BOOL bNodelay=TRUE;

SetSockOpt(s,IPPROTO_TCP,TCP_NODELAY,(const char*)&bNodelayt,sizeof(BOOL));
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: