您的位置:首页 > 编程语言 > C语言/C++

实战c++中的智能指针unique_ptr系列-- unique_ptr的get_deleter方法(自定义删除器)

2015-12-26 13:08 731 查看
unique_ptr的成员函数在上一篇博客中几乎全部涵盖,其实还有一个很有踢掉,即std::unique_ptr::get_deleter

字面已经很明显了,就获得deleter:

Returns the stored deleter

The stored deleter is a callable object. A functional call to this object with a single argument of member type pointer is expected to delete the managed object, and is automatically called when the unique_ptr is itself destroyed, assigned a new value, or resetted while non-empty.

直接看例子:

#include <iostream>
#include <memory>

class state_deleter {  // a deleter class with state
int count_;
public:
state_deleter() : count_(0) {}
template <class T>
void operator()(T* p) {
std::cout << "[deleted #" << ++count_ << "]\n";
delete p;
}
};

int main() {
state_deleter del;

std::unique_ptr<int> p;   // uses default deleter

// alpha and beta use independent copies of the deleter:
std::unique_ptr<int, state_deleter> alpha(new int);
std::unique_ptr<int, state_deleter> beta(new int, alpha.get_deleter());
return 0;
}


运行程序,输出结果:

[deleted #1]

[deleted #1]

说明了,在函数结束的时候,alpha beta的析构函数被调用了,而且析构函数是我们自己定义的类。

在上面的代码上加入对alpha beta的操作:

int main() {
state_deleter del;

std::unique_ptr<int> p;   // uses default deleter

// alpha and beta use independent copies of the deleter:
std::unique_ptr<int, state_deleter> alpha(new int);
std::unique_ptr<int, state_deleter> beta(new int, alpha.get_deleter());

std::cout << "resetting alpha..."; alpha.reset(new int);
std::cout << "resetting beta..."; beta.reset(new int);

return 0;
}


输出:

resetting alpha…[deleted #1]

resetting beta…[deleted #1]

[deleted #2]

[deleted #2]

说明在reset方法后,也调用了自定义的析构~

再继续添加代码:

#include <iostream>
#include <memory>

class state_deleter {  // a deleter class with state
int count_;
public:
state_deleter() : count_(0) {}
template <class T>
void operator()(T* p) {
std::cout << "[deleted #" << ++count_ << "]\n";
delete p;
}
};

int main() {
state_deleter del;

std::unique_ptr<int> p;   // uses default deleter

// alpha and beta use independent copies of the deleter:
std::unique_ptr<int, state_deleter> alpha(new int);
std::unique_ptr<int, state_deleter> beta(new int, alpha.get_deleter());

// gamma and delta share the deleter "del" (deleter type is a reference!):
std::unique_ptr<int, state_deleter&> gamma(new int, del);
std::unique_ptr<int, state_deleter&> delta(new int, gamma.get_deleter());

std::cout << "resetting alpha..."; alpha.reset(new int);
std::cout << "resetting beta..."; beta.reset(new int);
std::cout << "resetting gamma..."; gamma.reset(new int);
std::cout << "resetting delta..."; delta.reset(new int);

return 0;
}


输出:

resetting alpha…[deleted #1]

resetting beta…[deleted #1]

resetting gamma…[deleted #1]

resetting delta…[deleted #2]

[deleted #3]

[deleted #4]

[deleted #2]

[deleted #2]

这里我们重点关注delta,这里使用的是按引用传递。

还有一个地方需要说明:

析构的顺序与构造的顺序相反~~

go on:

#include <iostream>
#include <memory>

class state_deleter {  // a deleter class with state
int count_;
public:
state_deleter() : count_(0) {}
template <class T>
void operator()(T* p) {
std::cout << "[deleted #" << ++count_ << "]\n";
delete p;
}
};

int main() {
state_deleter del;

std::unique_ptr<int> p;   // uses default deleter

// alpha and beta use independent copies of the deleter:
std::unique_ptr<int, state_deleter> alpha(new int);
std::unique_ptr<int, state_deleter> beta(new int, alpha.get_deleter());

// gamma and delta share the deleter "del" (deleter type is a reference!):
std::unique_ptr<int, state_deleter&> gamma(new int, del);
std::unique_ptr<int, state_deleter&> delta(new int, gamma.get_deleter());

std::cout << "resetting alpha..."; alpha.reset(new int);
std::cout << "resetting beta..."; beta.reset(new int);
std::cout << "resetting gamma..."; gamma.reset(new int);
std::cout << "resetting delta..."; delta.reset(new int);

//std::cout << "calling gamma/delta deleter...";
gamma.get_deleter()(new int);

alpha.get_deleter() = state_deleter(); // a brand new deleter for alpha

// additional deletions when unique_ptr objects reach out of scope
// (in inverse order of declaration)

return 0;
}


此时输出:

//输出:

//resetting alpha…[deleted #1]

//resetting beta…[deleted #1]

//resetting gamma…[deleted #1]

//resetting delta…[deleted #2]

//calling gamma / delta deleter…

//[deleted #3]

//[deleted #4]

//[deleted #5]

//[deleted #2]

//[deleted #1]

最后再来一个:

#include <iostream>
#include <memory>

using namespace std;

void deleter(int* ptr) {
delete ptr;
ptr = nullptr;
std::clog << "shared_ptr delete the pointer." << std::endl;
}

int main(void) {

//定义函数类型
typedef void(*tp) (int*);
typedef decltype (deleter)* dp;
using up = void(*) (int*);

std::shared_ptr<int> spi(new int(10), deleter);
std::shared_ptr<int> spi2(new int, deleter);
spi2 = std::make_shared<int>(15);

std::cout << "*spi = " << *spi << std::endl;
std::cout << "*spi2 = " << *spi2 << std::endl;

//unique_ptr是模板函数需要删除器(deleter)类型, 再传入具体的删除器
std::unique_ptr<int, decltype(deleter)*> upi(new int(20), deleter);
std::unique_ptr<int, tp> upi2(new int(25), deleter);
std::unique_ptr<int, dp> upi3(new int(30), deleter);
std::unique_ptr<int, up> upi4(new int(35), deleter);

std::cout << "*upi = " << *upi << std::endl;
std::cout << "*upi2 = " << *upi2 << std::endl;
std::cout << "*upi3 = " << *upi3 << std::endl;
std::cout << "*upi4 = " << *upi4 << std::endl;

return 0;

}
//输出:
//shared_ptr delete the pointer.
//*spi = 10
//* spi2 = 15
//* upi = 20
//* upi2 = 25
//* upi3 = 30
//* upi4 = 35
//shared_ptr delete the pointer.
//shared_ptr delete the pointer.
//shared_ptr delete the pointer.
//shared_ptr delete the pointer.
//shared_ptr delete the pointer.


只是分析这两句:

std::shared_ptr<int> spi2(new int, deleter);
spi2 = std::make_shared<int>(15);


这时候会调用deleter删除器!
内容来自用户分享和网络整理,不保证内容的准确性,如有侵权内容,可联系管理员处理 点击这里给我发消息
标签: